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Abstract 

This research develops the Android Protection System (APS), a hardware-

implemented application security mechanism on Android smartphones.  APS uses a hash-

based white-list approach to protect mobile devices from unapproved application 

execution.  Functional testing confirms this implementation allows approved content to 

execute on the mobile device while blocking unapproved content.  Performance 

benchmarking shows system overhead during application installation increases linearly as 

the application package size increases.  APS presents no noticeable performance 

degradation during application execution.  The security mechanism degrades system 

performance only during application installation, when users expect delay.   

APS is implemented within the default Android application installation process.  

Applications are hashed prior to installation and compared against a white-list of 

approved content.  APS allows applications that generate a matching hash; all others are 

blocked.  APS blocks 100% of unapproved content while allowing 100% of approved 

content.  Performance overhead for APS varies from 100.5% to 112.5% with respect to 

the default Android application installation process.  This research directly supports the 

efforts of the USAF and the DoD to protect our information and ensure that adversaries 

do not gain access to our systems.   
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 ANDROID PROTECTION SYSTEM: A SIGNED CODE SECURITY 
  

  MECHANISM FOR SMARTPHONE APPLICATIONS 

 

I.   Introduction 

1.1 Research Domain 

Mobile devices are an ever-increasing part of our society.  Cut off network access 

or service coverage and life for many comes screeching to a halt.  Mobile phones expand 

communication networks beyond wired limitations.  Smartphones, mobile phones that 

can execute third party code, further extend the capabilities now at the fingertips of the 

general public.  Smartphone users have the ability to control home security features, 

modify house lighting, start cars, manage bank accounts, stream online video, use Global 

Positioning System (GPS) services, and many more, all from the convenience of a mobile 

phone application. 

Gartner estimates that worldwide mobile phone sales for Q3 2010 totaled 417 

million devices, of which 81 million were smartphones.  Smartphone sales grew 96 

percent from Q3 2009, accounting for 19.3 percent of overall mobile phone sales.  

Google‘s Android Operating System accounted for 25.5 percent of smartphone sales, up 

from 3.5 percent in 2009 [GN10].   

As smartphone use increases, the security of applications and underlying code 

becomes increasingly important.  This research focuses on the domain of smartphone 

application security, specifically on the Android Operating System. 
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1.2 Problem Statement 

Increased smartphone use is a serious security issue.  Smartphone applications 

access and store sensitive information including GPS location, Short Message Service 

(SMS) billing, bank account login credentials, premium phone calls, e-mails, and text 

messages.  Access to this information greatly incentivizes malicious application 

developers to create new ways to steal sensitive data.   

Anyone can write, sign, and submit an application to the Android Market.  Many 

of these applications are available for free download.  The average smartphone in the 

United States has 22 applications installed [NW10].  However, Android application 

security depends almost solely on decisions users make when downloading and installing 

applications.  Numerous applications reside on smartphones with no mechanism in place 

to protect against malicious code execution. 

1.3 Research Goals 

The existing application security solution on the Android Operating System is 

inadequate, relying heavily on user discretion.  Signature-based mobile phone security 

(anti-virus, anti-spyware, etc.) is unable to keep up with the rapid growth in smartphone 

use.  Therefore, malicious content is freely available and often infects mobile devices.  

The goal of this research is to improve application security on a mobile platform.   

This research adheres to a defense-in-depth strategy.  The native security in the 

Android Operating System is left intact.  This research adds a complementary security 

mechanism to prevent unauthorized application code from executing on an Android 

device.  The approach implements the security mechanism within kernel space of the 
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operating system so that the protection itself cannot be compromised by malicious code.  

Once implemented, the security mechanism is benchmarked for performance overhead 

and protection effectiveness.   

1.4 Document Outline 

Chapter II summarizes the ARM architecture, the Android Operating System, and 

the current state of security mechanisms—those native to Android as well as third-party 

products.  Chapter III introduces the methodology for developing, implementing, and 

evaluating a new application security mechanism, called Android Protection System 

(APS).  This mechanism ensures that application packages on the Android platform are 

verified before code is allowed to execute.  Chapter IV discusses and analyzes the results 

from benchmarking the performance of APS.  Finally, Chapter V highlights 

accomplishments of this research, focusing on the impact to the smartphone community 

as well as suggestions for future work.     
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II.   Literature Review 

2.1 Introduction to ARM Architecture 

Most mobile phones use a microprocessor based on the ARM architecture 

[SAH09]; Google also selected ARM as the architecture on which to develop the Android 

Operating System (OS).  This architecture, with processors available to meet a variety of 

performance, power, area, and application needs, is a natural fit for mobile devices.  This 

section explores five aspects of the ARM architecture and examines Android‘s use of this 

architecture.  The Programmers‘ Model and Instruction Set sections examine the 

architecture in general.  The Addressing Modes, Memory and System Architectures, and 

Vector Floating-Point Architecture sections look more in-depth at the architecture and 

how they apply to the Android OS. 

2.1.1 Programmers’ Model 

The Programmers‘ Model portion of the ARM Architecture Manual [ARM05] 

describes various aspects of the architecture including data types, processor modes, 

registers, general-purpose registers, program status registers, exceptions, endian support, 

unaligned access support, synchronization primitives, the Jazelle Extension, and saturated 

integer arithmetic.  All of these are crucial to understand application programming for the 

Android device and for making kernel-level modifications to the system.   

ARM supports byte, halfword, and word data types.  Most data operations are 

performed on word quantities [ARM05].  ARM instructions are exactly one word and 

aligned on four-byte boundaries.  The architecture has seven processor modes as shown 

in Table 2.1.  All modes other than user mode are considered privileged modes and are 
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not accessible other than via an exception.  The privileged modes have full access to 

system resources and can freely change mode.   

 

Table 2.1.  ARM Processor Modes [ARM05] 

 

The ARM architecture provides 37 programmer accessible registers, 31 general-

purpose registers and six status registers.  All registers are 32 bits in width, although the 

status registers typically do not allocate or implement all 32 bits.  The architecture 

arranges the registers in banks that partially overlap.  The current mode determines which 

of the banks are available.  Each processor mode has access to 15 general-purpose 

registers, one or two status registers, and the program counter.  An overview of this 

layout is shown in Figure 2.1 below.  Each column represents a processor mode, showing 

the available register resources.   
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Figure 2.1.  ARM Register Organization [ARM05] 
 

Program Status Registers include the Current Program Status Register (CPSR) 

and the Saved Program Status Register (SPSR).  The CPSR is accessible from any of the 

processor modes, but the SPSR is only accessible from exception modes.  The CPSR 

contains condition code flags, interrupt disable bits, current processor mode, as well as 

additional status and control information.  The SPSR preserves the value of the CPSR 

whenever an exception occurs.  Both the CPSR and SPSR have reserved bits, user-
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writable bits, privileged bits, and execution state bits.  Condition codes consist of 

Negative (N), Zero (Z), Carry (C), and oVerflow (V) [ARM05].   

Exceptions occur when there is an externally generated interrupt or an attempt to 

execute an undefined instruction.  Exceptions interrupt normal execution flow, so 

processor state must be saved prior to executing the exception routine.  ARM supports 

seven exception types as shown in Table 2.2 with the associated processor mode.   

Table 2.2.  ARM Exception Types [ARM05]

 
 

ARM supports mixed endian data access—the address of a particular byte in 

memory will be the same regardless of whether it is being accessed through big endian or 

little endian means.  Byte, halfword, and word accesses all return the same data 

regardless of endianness.  This is accomplished through the use of byte invariance, which 

means that the address of a byte in memory is the same no matter what type of access is 

used.  Double and multiple word accesses are treated as series of word accesses, so the 

same bytes are returned in these cases as well.  Instruction fetches in ARM use little 

endian byte order and must be word-aligned.  
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ARM has unaligned word and halfword data access support.  If enabled, the 

processor uses as many memory accesses as necessary to generate the required transfer of 

adjacent bytes transparently to the programmer.   

ARM also supports comprehensive non-blocking shared-memory synchronization 

primitives that scale for multiple-processor system designs.  This is an improvement over 

the read-locked-write operations that swap register contents with memory for shared 

memory synchronization.  The two instructions that perform this synchronization are 

Load-Exclusive (LDREX) and Store-Exclusive (STREX).  LDREX loads a register from 

memory, forces the executing processor to indicate an active inclusions access in the 

local monitor, and marks the physical address as exclusive access for the executing 

processor if the Shared memory attribute is present for this address.  STREX performs a 

conditional store to memory, only if the executing processor has exclusive access to the 

memory addressed.   

The Jazelle Extension accelerates bytecode execution of Java Virtual Machines 

(JVMs) [ARM05].  JVMs can be written to automatically take advantage of accelerated 

opcode execution if available, but the bytecode will still execute even if the extension is 

not present.  The Jazelle Extension expects general-purpose registers and other resources 

to conform to a particular calling convention when the Jazelle state is entered and exited.  

The J bit from the processor status registers in conjunction with the T bit determines the 

execution state of the processor.   

Finally, saturated integer arithmetic is supported in ARM.  Saturated arithmetic 

modifies the way normal integer arithmetic behaves by allowing arithmetic operations 

that exceed the bounds of the 32-bit registers.  The result of a saturated arithmetic 
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operation represents the closest possible number to the correct mathematical result.  If the 

correct result is too great to represent in 32 bits and overflows the upper end of the 

representable range, the result is set to +231-1.  If the correct result is too small to 

represent in 32 bits and overflows the lower end of the representable range, the result is 

set to -231-1.  This modification is useful for many Digital Signal Processing (DSP) 

applications.  These applications do not react well to an abrupt change of sign, which 

would be the result on an arithmetic operation overflow.    

2.1.2 Instruction Set 

ARM instructions must adhere to the specific encoding pattern shown in Figure 

2.2.  Any other pattern of bits is considered UNPREDICTABLE or UNDEFINED.  Most 

ARM instructions will act as a NOP unless the N, Z, C, and V flags in the CPSR satisfy 

the condition specified in the condition code field of the instruction.  There are only a few 

instructions that execute unconditionally.  These instructions have been introduced in 

ARMv5 and later. 

Branch instructions allow conditional branches either forward or backward in the 

program.  These branches can be up to 32MB and are executed by a specific instruction 

or by writing a value to the program counter (PC) register.  Additional functionality is 

introduced with the Branch with Link (BL), Branch and Exchange (BX), Branch with 

Link and Exchange (BLX), and Branch and Exchange Jazelle (BXJ) instructions.   
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Figure 2.2.  ARM Instruction Encoding Pattern [ARM05] 

 

BL preserves the address of the instruction after the branch.  BX copies the 

contents of a general-purpose register to the PC and shifts the processor to Thumb state if 

bit [0] of this transferred value is 1.  BLX behaves like BX, but writes the address of the 

next instruction into the LR and shifts to Thumb state.  BXJ also behaves like BX, but 

enters Jazelle state if it is available and enabled.  These instructions implement subroutine 

behavior if the programmer desires to use them as such.   
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ARM provides 16 different data-processing instructions to perform logical 

operations, basic arithmetic operations, tests, comparisons, moves, and bit clears.  Most 

of these instructions require two source operands.  Some store results to a register and 

update condition flags and others simply update condition flags for jump and branch 

operations (conditionals and loops).  One of the two source operands must always be a 

register and the other may be a register or an immediate value, depending on the specific 

instruction.   

ARM can perform multiplication on several different classes of instructions.  

Normal multiplication takes two 32-bit inputs and returns a 32-bit output.  Long 

multiplication takes two 32-bit inputs and returns a 64-bit result.  Halfword multiplication 

takes two signed 16-bit inputs and returns a 32-bit result.  Word, halfword multiplication 

produces a top 32-bit result.  Most significant word multiplication takes two 32-bit inputs 

and returns a top 32-bit result.  Dual halfword multiplication produces a 32-bit result 

from two 16-bit inputs.   

ARM‘s normal data-processing and multiply instructions are complemented by a 

set of parallel addition and subtraction instructions.  There are six distinct basic 

instructions, each of which has six variants, for a total of 36 possible instructions.  The 

basic instructions exchange or manipulate the data sources while the variants incorporate 

signed/unsigned arithmetic modulo 28 or 216, signed/unsigned saturating arithmetic, and 

signed/unsigned arithmetic with halved results.  Similarly, extend instructions come with 

six basic instructions that unpack data by sign or zero-extending bytes to 

words/halfwords and halfwords to words.  There are sign extension and zero extension 

variants for each of these six basic extend instructions.   



12 
 

Two instructions move contents of a PSR to or from a general-purpose register.  

There are also several instructions that write directly to specific bits or groups of bits 

within the CSPR.  These instructions can set a condition code flag to a known value, to 

enable or disable interrupts, to change processor mode, to change the endianness of 

load/store operations, and change the processor state.   

The basic load and store instructions in the ARM architecture come in two broad 

types.  The first loads or stores a 32-bit word or an 8-bit unsigned byte.  The second loads 

or stores a 16-bit unsigned halfword, load and signs a 16-bit halfword or an 8-bit byte, or 

loads or stores a pair of 32-bit words.  Addressing modes for both types are formed using 

the base register and an offset.  The base register is always a general-purpose register and 

the offset is an immediate value, a register, or a scaled register.  This combination of base 

register and offset forms the memory address in one of three ways: offset, pre-indexed, or 

post-indexed.  Multiple load and store instructions are similar in format and intent except 

they operate on a subset of the general-purpose registers rather than one at a time.   

The Swap (SWP) or Swap Byte (SWPB) instructions operate on semaphores.  

Both instructions have a single addressing mode and are used for process 

synchronization.  Memory semaphores can be loaded and altered without interruption 

because the load and store operations are atomic.   

Processor exceptions occur via a Software Interrupt (SWI) instruction or a 

Breakpoint (BKPT) instruction.  User mode can make calls to privileged OS code by 

using the SWI instruction.  The BKPT instruction causes a Prefetch Abort exception to 

occur, which is handled by a previously installed debug monitor program.  This is 
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sometimes referred to as a software breakpoint.  The ARM processor ignores the 

immediate fields in both of these instructions.   

Coprocessor instructions in the instruction set provide communication with 

coprocessors.  The three types include a coprocessor data processing operation, register 

transfer to and from coprocessor registers, and address generation for the coprocessor 

Load and Store instructions [ARM05].  Coprocessors are distinguished by a 4-bit field in 

the instruction.   

2.1.3 Addressing Modes 

The first addressing mode used with ARM instructions is called ―Data-processing 

operands.‖  This mode has 11 formats to calculate the shifter_operand portion of the 

data-processing instruction.  This shifter_operand portion could be an immediate, a 

register, or the result of one of many shift or rotate operations on a register.  Each 

variation of the 11 formats has its own specific syntax and operation flow.   

The second addressing mode is ―Load and Store Word or Unsigned Byte.‖  The 

mode has nine formats to calculate the address for the respective load or store instruction.  

The addressing_mode portion of the load or store instruction could be an immediate 

offset/index, a register offset/index, or a scaled register offset/index.  For an immediate 

offset, the address is calculated by adding or subtracting the immediate value to or from 

the value in the base register.  For a register offset, the mode calculates an address using 

the values in the index register and the base register.  For scaled register offset, the mode 

calculates the address using the shifted or rotated value in the index register and the base 

register.   
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The third addressing mode is ―Miscellaneous Loads and Stores‖ with six formats.  

The addressing_mode portion of the load or store instruction could be an immediate 

offset, register offset, immediate pre-indexed, register pre-indexed, immediate post-

indexed, or register post-indexed.  The addressing_mode portion of the instruction is 

calculated in the same way as the second addressing mode, above. 

The fourth addressing mode is ―Load and Store Multiple.‖  These instructions 

work the same as those above in the third addressing mode except that they operate on a 

subset of the general-purpose registers rather than a single register.  The 

addressing_mode can be increment after, increment before, decrement after, or 

decrement before.  For increment after, the start_address is equal to the base register 

value and increments by four for each subsequent address.  For increment before, the 

start_address is equal to the base register value plus four and increments by four for each 

subsequent address.  For decrement after, the start_address is equal to the base register 

value minus four times the number of registers specified in the encoding, plus 4 and 

increments by four for each subsequent address.  For decrement before, the start_address 

is equal to the base register value minus four times the number of registers specified in 

the encoding and increments by four for each subsequent address.   

The final addressing mode is ―Load and Store Coprocessor.‖  This mode has four 

options to calculate the address of a respective load or store instruction.  The 

addressing_mode could be an immediate offset, immediate pre-indexed, immediate post-

indexed, or unindexed.  All four options produce a sequence of consecutive addresses.  

For immediate offset, the mode adds or subtracts four times the immediate offset value to 

or from the base register value to get the first address and increments by four for 
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subsequent addresses until signaled by the coprocessor to stop (no more than 16 words).  

For immediate pre-indexed, the mode adds or subtracts four times the immediate offset 

value to or from the base register value and increments by four for subsequent addresses 

until signaled by the coprocessor to stop.  The difference is that the first address is written 

back to the base register only when the condition code status matches the condition 

specified in the instruction.  For immediate post-indexed, the first address is the base 

register value and the mode increments by four for subsequent addresses until signaled by 

the coprocessor to stop.  The base register value is updated during the process whenever 

the condition code status matches the condition specified in the instruction.  For 

unindexed, the first address is the base register value and the mode increments by four to 

calculate subsequent addressed until signaled by the coprocessor to stop.   

2.1.4 Memory and System Architectures 

Memory behavior in ARM is classified by type: strongly ordered, device, and 

normal.  Each of these types can be further distinguished by access mechanisms and 

cacheable and shared attributes.  Coprocessor 15 (CP15) is the primary control 

mechanism for virtual memory systems as well as identification, configuration, and 

control of other memory configurations and system features.   

The type, size, access speed, and architecture of memory are all important parts of 

the decision process to achieve certain overall system performance and cost goals.  A 

memory hierarchy is formed when different types of memory are included in a system 

design.  The memory is typically layered where layers with higher numbers are further 
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from the core and have increased access times.  ARM provides caches and I/O at each 

layer.  Higher layers have a larger size but also increased latency.   

The L1 cache supports multiple virtual address aliases to a specific memory 

location.  CP15 controls the size, associativity, and organization parameters of the cache 

within the subsystem.  Entries in the L1 cache do not need to be invalidated for different 

virtual to physical mappings.  This reduces the requirement for cache clean on a context 

switch, which helps software perform more efficiently.  Aliases to the same physical 

address may exist in memory regions that are described in the page tables as being 

cacheable [ARM05].  The L2 cache can be either tightly coupled to the core or 

implemented as memory mapped peripherals on the system bus.  Additional levels of 

cache may be used, but are not required.   

Tightly Coupled Memory (TCM) is a physically addressed area of memory that 

makes up part of the Level 1 memory subsystem (along with the L1 cache).  This area 

provides low latency memory without the unpredictability of caches.  This memory is 

ideal for storing critical routines, for use as scratchpad data, for data types whose locality 

properties are not well suited to caching, and for critical data structures such as interrupt 

stacks [ARM05].   

Resets, interrupts, and imprecise aborts are typically asynchronous events, as 

opposed to the synchronous events tied to many exceptions.  Resets are the only non-

maskable event contained within the ARM architecture.  Interrupts have three different 

levels: fast interrupt request, non-maskable fast interrupt request, and normal interrupt 

request.  Whatever causes the interrupt must be deasserted prior to re-enabling of the 

interrupts.   
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2.1.5 Vector Floating-Point Architecture 

The vector floating-point architecture (VFP) is a coprocessor extension to the 

ARM architecture [ARM05].  It adds single-precision and double-precision floating-point 

arithmetic to the system.  To completely implement the VFP, the architecture must 

include support code which provides features not supplied by the hardware.   

The VFP comes with 32 general-purpose registers, and a full set of instructions 

for loading, storing, transferring, adding, subtracting, multiplying, dividing, square-

rooting, copying, converting, and comparing values in these registers.  VPF also supports 

floating-point exceptions for invalid operations, division by zero, overflow, underflow, 

and inexact.   

VFPs can be implemented with or without a hardware component.  Software-only 

implementations (VFP emulators) use ARM routines to emulate all floating-point 

arithmetic.  These implementations can be more efficiently accomplished through the 

direct use of software floating-point libraries, and hence have not been developed.  

Hardware implementations use the hardware to handle common cases and use support 

code only when the hardware cannot handle a case.  This approach optimizes the 

performance of the architecture. 

2.2 Introduction to Google Android Operating System 

Release of the Google Android OS opened numerous opportunities for coders and 

application developers to write programs and make modifications to customize almost 

any portion of a mobile device [FOG09, Dim08, Has08, BurE09].  This open platform 

supports customized legitimate applications, but also opens the door for a significant 
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increase in malicious content [RML09].  The Android OS is primarily for use on mobile 

devices, mainly cellular phones [Mur09].  Organizations target customers who own 

mobile devices and companies who want their core applications built on a platform 

supported by the Open Handset Alliance (OHA) [HK09], so it is important that security 

professionals develop an understanding of Android OS to mitigate risks and 

vulnerabilities.   

This section presents background on Android, followed by specific advantages 

and known implementations of Android.  The information contained in this section 

provides a better understanding of the impact Google Android OS has had on the mobile 

device community.  

2.2.1 Operating System Background 

Google was among the first in the mobile OS community to open mobile OS‘s by 

developing the Android Platform, supporting standards and publishing APIs which 

encouraged widespread, low-cost development of mobile applications.  In September 

2008, T-Mobile released the first smartphone based on the Android Platform as well as a 

Software Development Kit (SDK) [UTG08].  In October, the source code was made 

available under Apache‘s open source license.   

Key architectural goals of the Android Platform allow applications to interact 

with one another and to reuse components.  The platform incorporates a Linux-based 

operating system stack for managing devices, memory, and processes and has libraries 

related to telephony, video, graphics, and User Interface (UI) programming [HK09].   
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The Android architecture consists of five distinct layers on the system stack: the 

Acorn RISC Machine (ARM) Linux core, the libraries, the Dalvik run-time byte-code 

interpreter, the application framework, and the applications [JTD09].  The platform is not 

a single piece of hardware or software, but a complete end-to-end software framework 

configurable to work on a variety of hardware implementations.  It includes everything 

from the bootloader to the applications.  Figure 2.3 shows a graphical representation of 

the application stack. 

 
Figure 2.3.  Overview of the Android Application Stack [SDT08] 

 

2.2.2 Advantages Offered by Android 

The Android Platform offers a variety of advantages not currently available in 

other mobile operating systems.  Google opened the Android market, allowing 
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application developers to publish applications without any restrictions [DCI09].  

Additionally, being an open platform encourages device and service provider-

independency.  Consumers are not tied to a specific device or cellular-service company to 

use Google Android.   

Android provides fully-developed features to exploit cloud-computing resources 

and supports a relational database on the handset [HK09].  It supports 2D and 3D 

graphics as well as various media file formats, allowing developers to create media 

common applications [DCI09]. 

The Dalvik VM significantly enhanced the power management system of the 

Android Platform.  This custom VM takes generated Java class files and combines them 

into its own native executable format.  Since it reuses duplicate information across 

various class files, space requirements are half what the JVM .jar file requires [HK09].  

Google also fine-tunes the garbage collection, omits the just-in-time (JIT) compiler, and 

uses registers instead of the stack for generation of assembly code.  These enhancements 

significantly reduce the power requirements of the system, making the Android Platform 

suitable for mobile device use.   

Finally, Android application developers can develop applications for any platform 

[JMH08] and applications can run in parallel when loaded on the device.  This allows 

processes running in the background to send alerts and notifications to the user.   

2.2.3 Known Implementations of Operating System 

The Open Handset Alliance (OHA) is a confederation of 50 Telecoms, mobile 

hardware, and software companies.  Headed by Google, the OHA backed Android as one 
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of its first open platform operating systems.  The Android Platform has been released on 

numerous cellular phones across a wide variety of service providers. 

Good Technology uses Android devices to connect to their corporate enterprise so 

employees can access company resources via a secure container in the client which 

separates protected enterprise data from personal data and applications stored on the 

mobile device.  The container also enables the IT department to enforce security policies, 

wipe enterprise data, and have government-grade data encryption [GT09].  

The FrauVent application improves the physical security of sensitive information 

utilized during financial transactions [PGT09].  FrauVent incorporates a multi-modal 

protocol that gives users information about a pending questionable transaction in a way 

that provides a suitable context for approving or rejecting such exchanges.  The goal is to 

establish the legitimacy of the transaction.  FrauVent uses the GPS and Mapping 

capabilities resident on an Android device.  For example, when questionable charges are 

applied against a user‘s bank account, the financial institution immediately sends a 

message to the user‘s phone requesting location and purchase information.  The user has 

the opportunity to follow reactive protocol and approve or flag the transaction.  Users can 

also follow proactive protocol and send location verification to their financial institute 

prior to making transactions.  Proactive action prevents account lockouts and fraud flags 

when transactions are made at odd hours or in varied locations.  This solution reduces the 

costs of fraud without requiring financial institutions to significantly change their 

extensively deployed end systems.   

Android supports memory streaming, making it suitable for Voice over Internet 

Protocol (VoIP) and there are proposals to incorporate software in Android devices to 



22 
 

secure VoIP [YA09].  Additionally, the automotive industry may incorporate the Android 

Platform into In-Vehicle Infotainment systems [MTV09].  The open platform encourages 

reuse between models as well as between manufacturers.  The capabilities of Android 

provide an interface similar to Personal Digital Assistant (PDA) and cell phone interfaces 

consumers have come to expect.   

IMS-Learning Design (IMS-LD) learning activity-based implementations rely on 

client-server architectures which are problematic for resource-limited mobile devices 

without reliable Internet access [ZNA09].  Google Android implements a subset of the 

IMS-LD design specification and uses SMS messages for synchronization thereby 

providing a correlated learning environment for system users.   

Mobile Social Networks (MSNs) are also making use of Android [LC09].  The 

information stored on devices is often shared and transferred between members of these 

networks.  MSN applications collect and store data on the device as well as information 

pertaining to any social network contacts or ―friends.‖ 

2.2.4 Summary 

This section introduces the Google Android OS, examines the background of the 

development as well as some of the features the platform offers over competing mobile 

operating systems, and outlines several uses of the Android Platform in various 

capacities.  It is most prevalent in mobile devices, but is also starting to be used in 

corporate networks, the automotive industry, and the banking industry to secure financial 

transactions.  With the widespread use of this platform, it is imperative that security 
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mechanisms be thoroughly reviewed and improved to protect data throughout various 

implementations.   

2.3 Examination of Android Protection Mechanisms 

This section reviews components within Android and briefly describes the 

associated interactions.  The built-in security features of the OS are closely examined.  

Three current implementations of security measures for Android are also reviewed.  The 

strengths and weaknesses of each method are discussed.  Finally, an improved Android 

security protection mechanism is proposed. 

2.3.1 Component Interactions 

Android defines four component types: Activity, Service, Content provider, and 

Broadcast receiver [EOM09].  Activity components define an application‘s user interface.  

Only one activity has keyboard and processing focus at a time, all others are suspended.  

Services do background processing thereby enabling activities to continue after the user 

interface disappears.  Content providers store and share data using a relational database.  

Each one has an associated authority describing the content it contains.  Broadcast 

receivers act as mailboxes for messages from other applications. 

2.3.2 Built-in Security Features 

The validity of on-board security features are a key interest area for consumers 

[Tho09].  Natively, Android provides protection through permissions as well as isolation 

and signatures.  Permissions ensure that explicit access is granted by an application for 

other applications to access data and functionality.  These permissions cannot be set at 

run-time, but rather must be set at install time via a ―manifest‖ which contains the 
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permissions enforced and requested by each application [BurJ08].  When a package 

installer is installing an application, it sets all of these permissions in the manifest via 

dialog with the user.  This is flawed in that it is not actually known whether applications 

will use the permissions and thereby gain trust legitimately or not [Phy10].   

The isolation and signatures protection native in Android are implemented by 

running applications in their own Virtual Machine (VM) and as a Linux process.  Each 

application is assigned a unique Linux user-id (UID) so its files are not visible to other 

applications.  This allows Android to limit the damage of any programming flaws.  If 

signatures allow UIDs to be shared, files can become visible to other applications 

[BurJ09].   

Currently, Android does not support hardware-based security features for 

application developers, although most Android phones are equipped with the required 

hardware modules [SAH09].  Android does, however, provide an additional protection in 

the form of signatures.  Any Android application must be signed with a certificate whose 

private key is held by the developer.  This certificate does not need to be signed by a 

certificate authority; it is used only to establish trust between applications by the same 

developer [Cha09, SFK10].  This signature does not provide complete protection, but 

adds an additional layer of security to the overall system.   

A team from Kokusai Denshin Denwa Institute (KDDI) R&D Laboratories 

formally analyzed the permission-based security model of Android, showing that after 

specifying system elements, the specified system preserves the desired security properties 

[SKF09].  This analysis was based on certain specific states, but does not translate to all 

states an Android device could enter. 
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2.3.3 Current State of Protection Mechanisms 

Several protection mechanisms for the Android Platform have been developed.  

This section examines three of them and explores the strengths and weaknesses of each.  

SCanDroid provides users with a better context for making security-relevant decisions 

when installing applications.  Saint (Secure Application INTeraction) governs install-time 

permission assignment and their use at runtime.  Finally, static analysis of executables 

uses collaboration to accomplish malware detection.   

2.3.3.1 SCanDroid 

SCanDroid (Security Certifier for Android) reasons about the security of Android 

applications [FCF10].  It statically analyzes data flows through applications and makes 

security-relevant decisions automatically.  This provides the user context to make an 

informed security decision when installing a new application.  An Android application 

can allow other applications to share its data and functionality, but the accesses must be 

carefully controlled.   

SCanDroid relies on Android-provided access controls and on underlying abstract 

semantics of Android applications to track data flow through and across components, as 

shown in Figure 2.4.  The implementation consists of seven modules as well as Watson 

Libraries for Analysis (WALA) interface: a bytecode loader, string/data analysis, an 

inflow filter, flow analysis, an outflow filter, a manifest loader, and a checker.  The 

bytecode loader sends application bytecode through String/Data Analysis and Flow 

Analysis, resulting in a Flows for Application consisting of data flow maps and graphs.  

The Checker compares this Flows for Application to output from the Manifest Loader 
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determining Constraints for the application.  If data flow is not consistent with security 

permissions specified by the manifest, the user is informed of potential danger prior to 

application installation.  Not all data flow can be statically analyzed, so some Constraints 

may be conditional, requiring Additional Information for Further Analysis. 

 

   
Figure 2.4.  SCanDroid Architecture of Analysis [FCF10] 
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Android applications all have components of type activity, service, 

broadcastReceiver, and contentProvider [BurJ08].  Components extend one of the base 

classes and override the methods in that class.  Each of the methods is considered an 

entry point and SCanDroid modularly analyzes those entry points.  SCanDroid treats 

component classes and methods as idealized, primitive constructs (as opposed to 

modeling general classes and methods).  It considers permissions as the only mechanism 

to control cross-component interactions.  This ensures data cannot flow from one store to 

another by preserving a well-typed environment.  Stores are generalizations of content 

providers, databases, files, and other data containers.  Therefore, a value from m can flow 

to store n only if readers of n can already read from m and writers of m can already write 

to n.   

This system requires the Java source code of the compiled JVML bytecode of 

applications for analysis.  Depending on the source of applications, this bytecode may be 

difficult to obtain.  Additionally, this system still allows the security decision to be made 

by the end user.  End users tend to be more focused on convenience and availability than 

on security issues.   

2.3.3.2 Secure Application INTeraction (Saint) 

Saint addresses the limited ability of applications to control who can access their 

interfaces as well as compensates for the rudimentary facilities that control how their 

interfaces are used by other applications.  Finally, Saint enhances the limited means 

applications have of selecting which application‘s interfaces they use [OME09].  The 
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improved infrastructure provides applications with installation-time policies to regulate 

the assignment of permissions that protect their interfaces.  

Saint uses an enhanced installer for applications to regulate application-defined 

permissions.  This goes well beyond the Android model of only allowing/disallowing 

permission assignments based on application-independent rules.  Now applications can 

exert control over the assignment of permissions declared through an explicit policy 

[OME09].  Saint enforces runtime policies of two types: access policies for identifying 

caller security requirements and expose policies for identifying callee security 

requirements.  Saint optionally can allow or disallow the user to override 

system/application policies.   

The Saint Installer and Saint Mediator are the key components of the Saint 

architecture, along with an AppPolicy Provider, FrameworkPolicyManager, and 

Condition Extensibility.  The Installer and Mediator enforce additional permission 

granting policies and mediate interprocess communication to ensure interaction policies 

specified by both the caller and callee applications are enforced.  This greatly enhances 

the native Android permission security, but still allows users to determine which 

applications to install and run. 

2.3.3.3 Static Analysis of Executables 

 Schmidt et al [SBS09] statically analyze executables on Android for 

collaborative malware detection.  They extract function calls from the Android 

environment using the command readelf and compare this attribute set with malware 

executables, using PART, Prism, and Nearest Neighbor Algorithms for classification.  



29 
 

The PART classifier scans the decision tree learner and extracts decision rules.  The 

Prism classifier uses pure rules to cover the entire attribute set through rule induction.  

The Nearest Neighbor Algorithm maps each result to a state space of {malicious, 

normal}, calculates distance to a subset, and determines if this result falls within a 

specified uncertainty level.   

The binary determination between malicious and normal executables is 

transformed into a certainty value falling in the range [0, 1].  A value of 0 indicates 

normal and a value of 1 indicates malicious.  Values in between indicate level of 

maliciousness.  Taking desired false-positive rate into consideration, a threshold is set for 

distinguishing between normal and malicious content.  Depending on the results, analysis 

can be performed on-device, sent out for collaboration between mobile devices, or sent to 

a remote mobile server for further inspection.  The executable is then classified as benign 

if it falls below the threshold; otherwise, it is classified as malicious and not allowed to 

run.   

The weakness in this method is it requires a device to trust other surrounding 

devices if acceptable results are not obtained on the device itself.  There is no guarantee 

that a neighboring device has not been compromised and will provide misleading analysis 

results.  Additionally, since the system compares known malware function calls to 

function calls of legitimate executables, it is a form of signature-based detection.  If a 

malware developer uses function calls that closely follow legitimate executables already 

on the Android device, the malware stands a good chance of being classified as benign. 
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2.3.4 Proposal for Improved Security Measures 

On March 9, 2010, England‘s The Register reported an instance of an embedded 

malware on an HTC Android phone that attempted to steal information from connected 

personal computers (PCs) when the device synchronized [Gir10].  The malware itself was 

resident on a Secure Digital (SD) memory card mounted in the device.  This type of 

malicious behavior will become more prevalent on mobile devices as mobile use of data 

networks increases.  None of the current security implementations discussed in this 

chapter would have prevented the attack described.   

In fact, malicious code can be executed on mobile devices despite all precautions 

the end user may take to avoid unintentionally allowing programs to access or modify 

data outside the parameters of set permissions.  A protection mechanism for PCs called 

SecureQEMU [Kim09] requires all legitimate code on the machine be signed at the page 

level.  Hashes for each page are protected in the system kernel.  Only code executing 

within a signed page is allowed to execute on the machine.  Code attempting to execute 

on the machine is checked against the page hashes stored in the kernel and if there is not 

a match, none of the code on that page is allowed to execute.  This system requires a 

known good state from which to initialize the protection and be provided trusted hashes.  

To date, no similar protection mechanism has been implemented on a mobile OS. 

2.3.5  Summary 

This section presents an overview of protection mechanisms native to the Android 

Platform.  It starts with a brief description of system components and then explores three 

aspects of built-in security within the OS.  It presents three alternative protection 
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mechanisms developed for the Android, examining the strategy behind each method.  

Finally, it concludes none of these protection mechanisms are sufficient to protect a 

device from execution of malicious code.  A brief overview of a new mobile security 

solution is provided and is examined in depth in the following chapters.   
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III.   Methodology 

3.1 Background 

Google‘s Android operating system (OS) is an open platform, allowing 

programmers to modify and customize the content and operational environment of 

mobile devices.  Malicious code can be executed on mobile devices despite all 

precautions an end user may take to avoid unintentionally allowing programs to access or 

modify data.  This research takes protection mechanisms originally developed for 

personal computers (PCs) and moves them to the Android environment.  Legitimate code 

is signed at the application package level for all programs on the device in a known good 

state.  Hashes for each package are stored in the system kernel and only code from a 

signed package is allowed to execute on the machine.  Code attempting to execute on the 

machine is checked against the package hash stored in the kernel and if there is no match, 

code in that package is not allowed to execute.  This system requires a known good state 

from which to initialize the protection and be provided trusted hashes.  As the world‘s 

computing environment becomes more and more mobile, it is crucial that the same 

security precautions employed on PCs are transitioned into the mobile environment. 

3.2 Problem Definition 

This section describes the specific goals of the research along with a hypothesis of 

the expected results.  The approach describes how the hypothesis is tested against the 

research goals.   
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3.2.1 Goals and Hypothesis 

The explosion of laptop and handheld devices around the world has significantly 

increased the importance of the mobile computing environment.  Cell phones are no 

longer simply a means of making person-to-person calls, they now store and transfer 

data, play music, check and send e-mail, browse the Internet, receive GPS navigation, 

and more.  As a result, like PCs, mobile devices are increasingly the target of malicious 

attacks.  The goal of this research is to provide a robust protection mechanism for mobile 

OSs.  The research uses as a baseline a mechanism implemented on a PC and determines 

if it can provide the same level of protection on a mobile platform.  Specifically, the 

research determines the effectiveness of implementing system protection within the 

kernel of the OS itself.  The effectiveness of the new protection is compared to the native 

protection offered by the OS.   

The data collected during testing is examined to analyze the various protection 

levels offered and system overhead.  The hypothesis for the research is that the new 

protection method will provide significant improvement in mobile system security 

without requiring substantial overhead.  It is expected an end-user will notice little to no 

difference in system performance once the new protection mechanism is in place. 

3.2.2 Approach 

Many mobile protection programs run on a mobile device as just another user 

program.  A better approach is to embed the protection mechanism within the kernel 

itself.  The kernel is modified such that it recognizes legitimate code and programs 
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requesting to execute on the device.  Only recognized programs are allowed to execute.  

This is known as a white-list.   

To determine if the new protection mechanism performs better than the native 

protection of the system, unapproved application packages are submitted to the mobile 

device.  The success rate of the new protection mechanism is compared to the native 

protection success rate.   

To determine whether the improved protection system requires substantially more 

overhead than the existing protection system, the load time for various programs with and 

without the new protection mechanism enabled is also analyzed. 

3.3 System Boundaries 

The System Under Test (SUT) for this research is the Android Protection System 

(APS).  APS includes the Android mobile device, the Android OS, a modified kernel, and 

various default applications on the mobile platform.  Approved and unapproved 

applications provide input to the system but are not part of the system itself.  This 

research focuses on Google‘s Android platform, built on the ARM processor architecture.  

No additional OS‘s are considered.  The SUT does not include any Android applications 

that may provide system protection, only the native protection is in place.  The Android 

mobile device communicates with an external server to receive input and updated system 

content.  These interactions are guided by the end-user.  The workload on the system 

consists of an end-user performing standard mobile device functions such as placing 

phone calls, browsing the Internet, sending text messages, running applications, and 



35 
 

listening to music.  APS prevents unapproved content from executing on the Android 

device.   

The Component Under Test (CUT) is the modified kernel within the Android OS.  

Figure 3.1 shows the system complete with inputs, outputs, and internal components.   

 

 Figure 3.1.  Android Protection System 
 

3.4 System Services 

The service APS provides is protection from the execution of unapproved content 

on the mobile device.  This allows for normal use of all approved programs and 

applications on the device while disallowing all others.  Any unapproved program 

attempting to execute is considered malicious and the protection service prevents 

execution.  The protection service does not interfere with the execution of approved 

programs and applications.   
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The protection service has two primary outcomes: unapproved content is 

successfully blocked or it is allowed.  These two outcomes are each paired with a 

secondary outcome: approved content is successfully executed or approved content is 

blocked.  The primary focus of the system is to successfully prevent unapproved content 

from executing on the mobile device.  However, a mobile device is rendered unusable if 

approved content is also unable to execute.  It is critical that the protection service 

succeed in both the primary and the secondary outcomes.   

3.5 Workload 

The workload for the system consists of programs within the system.  The 

workload includes both approved and unapproved applications.  The end-user submits 

this workload to the system by running programs and applications on the Android device.   

The number and size of applications sent to the system are workload parameters.  

These parameters vary from small to medium to large to extra-large levels and are 

discussed further in Section 3.8.  When varied, these requests can affect the performance 

of the system.  It is important to vary the workload to determine how the system performs 

under different loads.  Varying the workload parameters ensures that the system blocks 

all unapproved content without noticeable performance degradation. 

3.6 Performance Metrics 

The first metric to evaluate the performance of the APS is the percentage of 

unapproved content blocked.  This metric directly reflects the success of the system in 

preventing the execution of unapproved programs or applications on the Android device.  
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To achieve success, APS needs to achieve 100% for this metric; all unapproved content is 

blocked.   

The second metric is the percentage of approved content allowed.  This metric 

also reflects how well the system allows all approved programs and applications to 

execute on the Android device.  To succeed, APS needs to achieve 100% for this metric 

as well; all approved content is allowed. 

The final metric is program delay.  This metric compares the measured time for 

program and application loading without the protection mechanism in place to the 

measured time for loading with the protection mechanism in place.  APS adds overhead 

because it verifies all execution requests prior to program execution.  This delay 

manifests itself in the time it takes for the program or application to load.  Once the 

program or application is executing, system overhead should be the same whether or not 

the protection mechanism is in place.  The measurement of this metric starts when the 

system receives a program request and stops when the program completes initialization 

and is ready for user interaction.  Therefore, this metric measures the load time for 

execution requests.   

3.7 System Parameters 

The parameters listed below affect performance of the protection mechanism. 

 Device Type – The device type specifies the particular mobile platform being 

tested.  This research uses an Android Developer Phone 2 (ADP2). 

 Operating System (OS) – The OS changes how the protection mechanism is 

implemented while the hardware architecture changes based on the OS.  
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Modifications to the kernel or hooks into system calls are treated differently 

depending on the OS.  The OS used in this research is Android OS 1.5. 

 Onboard RAM – The RAM available determines how quickly the system will 

be able to process requests.  More RAM should result in better performance.  

The ADP2 has 192MB of onboard RAM. 

 Onboard Storage Space – The storage space available in the system 

determines how many programs and applications can be loaded on the device 

at a time.  Higher capacity means more executable code can be loaded.  The 

ADP2 has 512MB of Flash memory (ROM) and a 1GB microSD card.   

 Application Type – The type of applications used in the test changes the way 

the protection mechanism behaves.  Content submitted to the system includes 

Android application files.   

 Default Content – The programs and applications installed by default on the 

device affect the performance of the protection mechanism.  A larger 

collection of default content translates to more executable code that must be 

signed initially and more hashes that must be checked for verification 

purposes each time an execution service request is received.  Default 

applications on the ADP2 include: Alarm Clock, Browser, Calculator, 

Calendar, Camcorder, Camera, Contacts, Dev Tools, Dialer, Email, Gallery, 

Messaging, Music, Settings, Spare Parts, and Voice Dialer.   

 White-list – APS relies on a collection of hash digests of each approved 

application package in the system.  The location and size of this white-list 

affects the efficiency of the protection mechanism. 
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 Central Processing Unit (CPU) – The CPU of the system device determines 

how fast the system can execute instructions and therefore has an effect on the 

efficiency of the protection mechanism.  The ADP2 has a MSM7200A 

528MHz processor. 

 APS Control – APS consists of a modified Android kernel, complete with an 

application white-list and custom security functions.  This protection  

mechanism is either enabled on the device or is absent.  Enabling APS affects 

system performance.   

3.8 Factors 

The factors listed below are used in this research at the corresponding levels.  

Table 3.1 displays a table of all factors and levels. 

Table 3.1.  Experimental Factors 

Factors Levels 

Application 

Type 

Unapproved Content 
Malicious Application 

Non-malicious Application 

Approved Content 

Workload 

Small 

Medium 

Large 

Extra-Large 

APS Switch 
Enabled On 

Enabled Off 

 

 Application Type 

o Unapproved Content – This application is not on the approved list for 

the system and can be one of two types: malicious or non-malicious 

application. 
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 Malicious Application – This application uses a virus or malware 

to attack the system.  The malicious application represents an 

unauthorized user trying to gain access to the system.   

 Non-malicious Application – This program or application is not 

malicious but is also not on the approved list for the system.  Non-

malicious applications represent legitimate users trying to 

download and install programs or applications not approved for 

use on the device.    

o Approved Content – This application is on the system by default or 

included in the list of programs allowed to execute on the device.  All 

executable code in this level is signed and models normal users 

executing approved programs.   

 Workload  

o Small – An Android application package of size <100KB is requested 

for execution on the device.  An individual service request is sent for 

an application while no other applications are executing.  The number 

of requests sent is one and the frequency is once.  

o Medium – An Android application package of size >100KB and 

<500KB is requested for execution on the device.  An individual 

service request is sent for an application while no other applications 

are executing.  The number of requests sent is one and the frequency is 

once. 
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o Large – An Android application package of size >500KB and <1MB is 

requested for execution on the device.  An individual service request is 

sent for an application while no other applications are executing.  The 

number of requests sent is one and the frequency is once. 

o Extra-Large – An Android application package of size >1MB is 

requested for execution on the device.  An individual service request is 

sent for an application while no other applications are executing.  The 

number of request sent is one and the frequency is once. 

 APS Switch 

o Enabled On – APS is fully functional on the device, checking each 

application package against the white-list prior to installation and 

execution. 

o Enabled Off – APS is turned off on the device, leaving application 

packages to be handled by the default Android security mechanisms.   

 

3.9 Evaluation Technique 

A combination of simulation and measurement is used to evaluate the system.  

The Android Software Development Kit (SDK) comes with a simulator for the Android 

environment.  The simulator verifies that the protection mechanism compiles successfully 

on the Android device.  Several Android OS versions are available for development use.   

Following simulation, Android OS modifications are made and the kernel is 

compiled on an actual Android device.  Thus, measurements are taken on the real-world 

system and directly show how the system performs.   
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The experimental configuration is an HTC Android Dev Phone 1 connected to a 

Dell Latitude D630 laptop.  Modifications made to the Android OS and the modified 

kernel are compiled and flashed on the Dev Phone via the Dell laptop.  Unapproved 

content is loaded on the phone via the Dell laptop.  The combination of simulation and 

measurement supports each method being evaluated by the other. 

3.10 Experimental Design 

A full factorial design is used to evaluate the interaction between factors.  The 

factors include application type, workload, and APS switch, with 3, 4, and 2 levels, 

respectively.  This results in 3 x 4 x 2 = 24 experiments.  It is expected that sufficient 

statistical basis for analysis is achieved with 5 replications which brings the total number 

of experiments to 120.  Each experiment is run until service requests are allowed or 

denied.  The device, OS, onboard RAM, onboard storage, CPU, and default content all 

remain the same throughout the experiments while the factors vary.   

The variance of the data in this research should be relatively low, as the results 

depend solely on either the allowing or blocking of application code.  Results will be 

reported with 95% confidence.  The system overhead is expected to be slightly higher 

with the APS employed and slightly higher with larger application packages.   

3.11 Methodology Summary 

Mobile devices are quickly becoming as popular as PCs for general purpose 

computing.  While computer network-type protections are available for mobile networks, 

they are not nearly as sophisticated.  This chapter describes the methodology for testing a 

mobile network protection mechanism for Google‘s Android platform installed on an 
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HTC Dev Phone.  The goal of the research is to provide a protection mechanism within 

the kernel of the mobile device platform without incurring substantial system overhead.   

The SUT and CUT are identified along with the accompanying parameters.  

Factors are selected from the system and workload parameters.  The methodology varies 

these factors during experimentation to produce results in a variety of configurations.  

The metrics used for evaluation include percentage of unapproved content blocked, 

percentage of approved content allowed, and program delay.   

The methodology consists of both simulation and measurement evaluations.  The 

Android platform comes with an emulator used for the simulations and an HTC Dev 

Phone connected to a Dell Latitude D630 laptop is used for the measurement evaluations.  

A full factorial design is implemented with 120 experiments being conducted across 5 

replications. 
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IV.   Android Protection System Performance 

4.1 Introduction 

This chapter presents the Android Protection System (APS), a signed code 

modification of the Android OS 1.5 running on a smartphone device.  White-list creation 

and hash digest placement are described in the security mechanism implementation.  The 

evaluation technique is examined and results for functional protection and performance 

overhead are reported and analyzed.   

4.2 Android Protection System Implementation 

Proper identification of Android application code is essential for successful APS 

implementation.  Android application code is delivered in packages called .jar or .apk 

files similar to .zip archives.  Android applications are typically written in the Java 

programming language.  The Dalvik Virtual Machine (DVM) operates strictly on Dalvik 

bytecode, so all Java bytecode is converted and stored in a file called Classes.dex, which 

is packaged inside the application-specific .apk file.  The DVM must extract the 

Classes.dex file from the .apk to install and run the application.   

Default applications come pre-installed on the Android device and all default 

applications are considered approved content.  Other applications must go through the 

installation process prior to execution.  If changes are made to application packages after 

installation, the application will not execute until it is reinstalled.   During the installation 

process, APS computes a hash of the application package and compares the result to the 

white-list of approved content.   
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4.2.1 White-list Creation 

The white-list stores a collection of content approved for execution on the device.  

Rather than storing exact copies of the application files, which would be highly 

inefficient, the APS computes a cryptographic hash digest offline for every approved 

application package.  These digests are saved in a white-list for comparisons at runtime.  

These digests make it virtually impossible for an attacker to craft an application such that 

it would be allowed to execute on the system.  Even if the digests are openly stored, the 

hashing is one-way, and it is impossible to compute a message from a digest.   

The hashing algorithm used is the MD5 Message Digest Algorithm created and 

copyrighted by RSA Data Security.  The algorithm can be viewed in its entirety in 

Appendix A.  This algorithm comes complete with driver methods for creating hash 

digests from files, strings, or directly from standard input.  The MDFile() method 

calculates hash digests for all approved .apk files offline.  These digests make up the 

white-list used by the APS.   

4.2.2 Hash Digest Placement 

Once all hash digests are calculated, they are stored as Strings in a file within the 

Android kernel.  Android applications are installed and loaded by a Package Manager.  

APS creates new functions within Android OS PackageManagerService which are 

accessible only by kernel-level processes, thus separating the protection mechanism from 

user space.  The hash digests, cryptographic hash algorithm, and APS security function 

are placed within this service. 
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When a user attempts to install and execute an application on the Android device, 

the system jumps into the PackageManagerService routines.  Before allowing an 

installation or runtime environment, the application package is supplied as input to a 

hashing function that returns the MD5 checksum of the file in the form of a hash digest.  

This digest is compared to the pre-computed values stored in the white-list.  If a match is 

found, the application package is considered approved content, the packageApproved flag 

is set, and the application is allowed to install and execute on the device.  If a match for 

the hash digest is not found in the white-list, the packageApproved flag is not set and the 

function sends an error message without installing the application or allowing it to 

execute on the device.  Appendix B identifies modifications made to the Android 1.5 

source code.   

4.3 Evaluation Technique 

To evaluate the protection performance of APS, it is tested with the protection 

mechanism both enabled and disabled.  In the enabled configuration all application 

package installation requests first pass through the custom APS security function.  Upon 

a white-list match the package is installed and a successful confirmation message is 

passed to the user.  If there is no white-list match, the package is blocked from 

installation and a rejection message is passed to the user.  The disabled configuration 

removes the custom APS security function; all application package installation requests 

are handled by the native Android system.  In the disabled configuration it is expected all 

applications will be allowed to install and execute on the device.  Section 4.4 examines 

results from protection testing.   



47 
 

To evaluate a system performance benchmark, the Android Debug Bridge (adb) 

measures program delay.  The adb is a versatile tool for managing the state of an 

Android-powered device. It is a client-server program with built-in functions for timing 

metrics.  The server component runs as a background process on the development 

machine (Dell laptop) and communicates with a daemon running as a background process 

on the Android device.  The client on the development machine establishes 

communication through a command-line interface.  A timestamp is taken when the 

system receives an installation request from the adb client.  A second timestamp is taken 

when the installation request is finished processing and control is returned to the user.  

Elapsed time is reported in milliseconds.  Section 4.4 examines results from performance 

testing.   

4.4 Functional Protection Testing 

Table 4.1 contains the functional protection results for the 120 tests conducted.  

The APS mechanism is enabled for the first 60 tests.  12 applications are individually 

submitted to the system for installation and 5 tests are run with each application for a 

total of 60 tests with this APS configuration.  The same 60 tests are run with the APS 

mechanism disabled.  The first letter of the application name identifies the size of the 

application package.  Small, medium, large, and extra-large file sizes are represented by 

―s‖, ―m‖, ―l‖, and ―x‖ respectively.   The remainder of the application name identifies the 

application type.  Approved, non-malicious, and malicious types are represented by 

―app‖, ―non‖, and ―mal‖ respectively.  Approved application packages have 

corresponding entries in the system white-list and are expected to be allowed.  Non-
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malicious application packages do not have corresponding entries in the white-list and are 

expected to be blocked.  Malicious application packages are approved applications that 

have been modified by an attacker.  These packages have corresponding entries in the 

white-list for the approved version, but the modified versions are expected to be blocked.  

Table 4.1. APS Functional Protection Results 
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Tests 1 through 20 evaluate the four approved application packages with APS 

enabled.  In each case the actual action matches the expected action of ―allow.‖  Tests 21 

through 60 evaluate the four non-malicious and four malicious application packages, all 

of which should be blocked by APS.  The results show that APS successfully produced 

the expected action in each case.   

Tests 61 through 120 evaluate the 12 application packages against the system with 

APS disabled.  The expected action for each of these tests is that the system will allow 

installation and execution.  There is no mechanism outside user interaction in place to 

prevent installation of unapproved content.  Test results indicate that the default Android 

protection mechanism produced the expected action for each test case.   

APS is successful in preventing the execution of unapproved application packages 

on the Android device.  100% of unapproved content is blocked.  APS is also successful 

in allowing approved application packages to execute on the Android device.  100% of 

approved content is allowed.   

4.5 Performance Benchmark 

The performance results of the 120 tests are shown in Table 4.2.  Each row in the 

table represents a single test configuration that is repeated five times.  The five test times 

are shown in the columns on the right with a calculated mean for each configuration.  The 

table is organized by application name and size, making it simple to compare 

performance with APS enabled to performance with APS disabled (every row switches 

APS status).  As expected, mean load times for test configurations with APS enabled are 

slightly higher than mean load times for test configurations with APS disabled. 
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Table 4.2. APS Performance Testing Results 

 
 

Figure 4.1 shows a linear response in application load time according to file size.  

The regression model for APS load time performance is                                    詣剣欠穴 劇件兼結 噺 ど┻なにど 髪 ど┻ばばは 茅 繋件健結 鯨件権結          (1) 

where ‗File Size‘ is the size of the application package file (.apk).  The p value for the 

regression analysis is less than 0.001, providing convincing evidence that the regression 

model is a good fit for the data.   
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Figure 4.1. Application Load Time – APS Enabled 

 
 

Figure 4.2 also shows a linear response in application load time according to file 

size.  The regression model for default Android load time performance is                                    詣剣欠穴 劇件兼結 噺 ど┻どひねば 髪 ど┻ばばは 茅 繋件健結 鯨件権結     (2) 

where ‗File Size‘ is the size of the application package file (.apk).  The only difference 

between these models is the location of the intercept.  

The difference in performance mean times between APS enabled configurations 

and APS disabled configurations is minimal.  Table 4.3 shows that the mean difference 

never exceeds 200 milliseconds, even for the largest application package sizes.  The data 

shows a linear response in mean load time according to file size.  The regression model 

for predicting the difference in mean time is                      経件血血結堅結券潔結 噺 にね┻ひばぱ 髪 ど┻どぱは 茅 繋件健結 鯨件権結   (3) 
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where ‗File Size‘ is the size of the application package file (.apk).  The 95% confidence 

interval for the intercept is [-15.107, 65.065] and for the slope is [0.040, 0.132].   

 
Figure 4.2. Application Load Time – APS Disabled 

 

Table 4.3. Difference in Mean Load Times 

 
 

The regression model is displayed in Figure 4.3.  The plot has a few points 

outside the 95% confidence interval, but the model has a clear linear increase.  The 
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largest application package sizes tested in this research approach 2MB, nearly double the 

1MB average size for Android applications.  Even at this large size, the mean difference 

in load time remains less than two-tenths of a second.  The effect APS has on system 

performance remains unnoticeable to the user.  For a user to notice a difference in system 

performance during an application installation process, the difference would have to be 

several seconds.  This threshold is significantly larger than the 1 second threshold 

proposed by Nielsen [Nie93] because it takes place during the installation process, when 

users expect a delay.  Using (3), an application package size would have to be 23MB in 

order for the user to experience an extra two seconds of delay with APS enabled.  Thus, 

APS achieves the development goal of adding minimal performance overhead.    

 
Figure 4.3. Difference in Application Load Times 
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4.6 Summary 

APS performs very well with respect to the default Android protection 

mechanisms.  Performance overhead for APS varies from 100.5% to 112.5% with respect 

to the default Android application installation process.  The overhead is linearly 

increasing, but will remain within usable user limits for application packages up to at 

least 23MB.  APS prevents 100% of unapproved installations while allowing 100% of 

approved content to install and execute.  Chapter V addresses accomplishments of this 

research and proposes future work for adding capability to this protection mechanism. 
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V.   Conclusions 

5.1 Research Accomplishments 

This research explores application protection in the smartphone world.  

Smartphones have greater capabilities than standard mobile phones, namely the ability to 

run third party applications.  While this ability provides many conveniences to 

smartphone users, it also introduces new incentive and avenues for malicious activity.  

APS is a signed code security mechanism developed and implemented on an Android 1.5 

kernel.  APS focuses on protecting the mobile device from the installation and execution 

of unapproved applications, as this is where a high percentage of malicious activity 

originates.  The performance of APS is compared to the performance of the default 

Android 1.5 platform.   

Malicious applications can attack a mobile platform in many ways, but the 

application packages must be unpacked and installed on the device in order for internal 

code to execute.  APS employs a security mechanism that hooks into the default 

application installation process on the Android platform.  APS prevents applications from 

installing unless a hash digest computed during runtime matches a value stored in a 

white-list within the Android kernel.   

APS blocked 100% of installation requests originating from unapproved content 

while allowing 100% of approved content to install and execute on the device.  The APS 

security mechanism is implemented on the Android platform with little or no noticeable 

performance impact to the user.  The mechanism is implemented during the installation 

process, so default and approved applications on the device continue to execute with no 
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performance impact.  All performance impact is realized during application installation.  

A 1.8MB application package increases the system overhead during installation by 106 

milliseconds.  To reach two seconds in system overhead, a 23MB application package 

would be required (based on a 95% prediction interval).  With an average application 

package size of ~1MB, the Android with APS does not impact user experience.   

5.2 Research Impact 

APS is perfectly suited for USAF and DoD enterprise deployment.  However, the 

type of protection offered by APS would likely not appeal to a typical smartphone user.  

The signed-code mechanism of APS prevents users from downloading, installing, and 

executing unapproved applications.  With thousands of applications available, typical 

users will avoid security mechanisms that hinder application freedom.  Government, 

military, and many corporate organizations however, may welcome ways to control 

content allowed on company devices.   

The white-list-based approach offered by APS is a simple means to an end for 

security-minded organizations.  This research establishes a foundation for building a 

secure mobile device environment.  Mobile system administrators can prepare a white-list 

of approved applications for company devices and use APS to ensure no additional 

applications are installed by device users.  This security mechanism allows corporations 

to reap the benefits of smartphone technology without having to worry about creating 

vulnerabilities through the installation of unwanted applications.  
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5.3  Future Research Areas 

The open source Android OS provides countless opportunities for custom security 

modifications.  Thus, APS is not an end-all solution.  Even so, this research presents a 

proof of concept that can be further developed into many types of security 

implementations.   

APS focuses on application security.  New application packages are verified 

against a white-list prior to installation.  Protection is also needed for resident data on the 

mobile device.  Signing static code does not prevent the signed code from executing in a 

malicious manner.  Approved content that is later executed in some modified manner or 

order could gain access to sensitive data on the device that is assumed to be safe from 

attack.  Adapting APS to ensure that applications execute as intended after installation 

would solve this problem. 

The manifest file (AndroidManifest.xml) contained in each application package 

controls application permissions.  All permissions are established at installation time and 

cannot be modified during runtime.  The typical smartphone user has no insight into the 

legitimacy of application permission requests made during installation.  Modifications 

could be made to the APS mechanism to examine the manifest file prior to installation, 

verifying that all requested permissions are necessary and legitimate.  This approach 

removes user approval of any system permission access requests.   

The previous section discussed the limitations APS imposes on smartphone 

application freedom.  APS does however allow applications to be added to the device as 

long as the hash is verified against a white-list.  This limits the application selection to 

only the pre-approved list.  To approve more applications, the kernel has to be re-



58 
 

compiled with a new white-list and flashed to the device.  The APS security mechanism 

could be modified to allow new applications to be added on the fly.  This solution would 

be difficult to develop while maintaining adequate protection, but success would make 

APS-enabled devices attractive to a much broader user base.   

The current APS implementation hard-codes a white-list directly inside the 

custom security function.  This is efficient, but security would be improved if the hash 

digests were stored in an encrypted file that was not opened until white-list values were 

requested.  The performance hit taken for removing hard-coded white-list entries would 

be worthwhile for the improved security. 

This research focuses on application security.  There are many additional types of 

executable code resident on a mobile device.  APS could be improved so as to protect 

against a wider range of file types.  Applications have the ability to dynamically pull code 

from the Internet.  This code would not pass through the application installation process, 

so APS would not block it.  The challenge is developing a mechanism that protects 

against numerous file types and modes of execution without decreasing system 

performance and overloading limited resources on the mobile device.   

Though developed on the Android platform, APS need not be a purely 

smartphone security mechanism.  As Android is deployed to new types of devices, 

research opportunities continue to grow.  Tablet PCs, desktops, laptops, and automotive 

computer systems are environments that need Android security research.  APS has 

proven successful in a smartphone environment and should also be tested on more robust 

devices.   
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Appendix A. MD5 Message Digest Algorithm 

Appendix A contains the MD5 Message Digest Algorithm as created and 

implemented by RSA Data Security, Inc.  This code is used to calculate hash digests for 

approved Android application packages.  These hash digests are stored in a white-list for 

use in the APS implementation.   

 
/* 
 
*****************************************************************
***** 
 ** md5.h -- Header file for implementation of MD5                   
** 
 ** RSA Data Security, Inc. MD5 Message Digest Algorithm             
** 
 ** Created: 2/17/90 RLR                                             
** 
 ** Revised: 12/27/90 SRD,AJ,BSK,JT Reference C version              
** 
 ** Revised (for MD5): RLR 4/27/91                                   
** 
 **   -- G modified to have y&~z instead of y&z                      
** 
 **   -- FF, GG, HH modified to add in last register done            
** 
 **   -- Access pattern: round 2 works mod 5, round 3 works mod 3    
** 
 **   -- distinct additive constant for each step                    
** 
 **   -- round 4 added, working mod 7                                
** 
 
*****************************************************************
***** 
 */ 
 
/* 
 
*****************************************************************
***** 
 ** Copyright (C) 1990, RSA Data Security, Inc. All rights 
reserved. ** 
 **                                                                  
** 
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 ** License to copy and use this software is granted provided 
that   ** 
 ** it is identified as the "RSA Data Security, Inc. MD5 Message     
** 
 ** Digest Algorithm" in all material mentioning or referencing 
this ** 
 ** software or this function.                                       
** 
 **                                                                  
** 
 ** License is also granted to make and use derivative works         
** 
 ** provided that such works are identified as "derived from the 
RSA ** 
 ** Data Security, Inc. MD5 Message Digest Algorithm" in all         
** 
 ** material mentioning or referencing the derived work.             
** 
 **                                                                  
** 
 ** RSA Data Security, Inc. makes no representations concerning      
** 
 ** either the merchantability of this software or the 
suitability   ** 
 ** of this software for any particular purpose.  It is provided 
"as ** 
 ** is" without express or implied warranty of any kind.             
** 
 **                                                                  
** 
 ** These notices must be retained in any copies of any part of 
this ** 
 ** documentation and/or software.                                   
** 
 
*****************************************************************
***** 
 */ 
 
/* typedef a 32 bit type */ 
typedef unsigned long int UINT4; 
 
/* Data structure for MD5 (Message Digest) computation */ 
typedef struct { 
  UINT4 i[2];                   /* number of _bits_ handled mod 
2^64 */ 
  UINT4 buf[4];                                    /* scratch 
buffer */ 
  unsigned char in[64];                              /* input 
buffer */ 
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  unsigned char digest[16];     /* actual digest after MD5Final 
call */ 
} MD5_CTX; 
 
void MD5Init (); 
void MD5Update (); 
void MD5Final (); 
 
/* 
 
*****************************************************************
***** 
 ** End of md5.h                                                     
** 
 ******************************* (cut) 
******************************** 
 */ 
 
/* 
 
*****************************************************************
***** 
 ** md5.c                                                            
** 
 ** RSA Data Security, Inc. MD5 Message Digest Algorithm             
** 
 ** Created: 2/17/90 RLR                                             
** 
 ** Revised: 1/91 SRD,AJ,BSK,JT Reference C Version                  
** 
 
*****************************************************************
***** 
 */ 
 
/* 
 
*****************************************************************
***** 
 ** Copyright (C) 1990, RSA Data Security, Inc. All rights 
reserved. ** 
 **                                                                  
** 
 ** License to copy and use this software is granted provided 
that   ** 
 ** it is identified as the "RSA Data Security, Inc. MD5 Message     
** 
 ** Digest Algorithm" in all material mentioning or referencing 
this ** 
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 ** software or this function.                                       
** 
 **                                                                  
** 
 ** License is also granted to make and use derivative works         
** 
 ** provided that such works are identified as "derived from the 
RSA ** 
 ** Data Security, Inc. MD5 Message Digest Algorithm" in all         
** 
 ** material mentioning or referencing the derived work.             
** 
 **                                                                  
** 
 ** RSA Data Security, Inc. makes no representations concerning      
** 
 ** either the merchantability of this software or the 
suitability   ** 
 ** of this software for any particular purpose.  It is provided 
"as ** 
 ** is" without express or implied warranty of any kind.             
** 
 **                                                                  
** 
 ** These notices must be retained in any copies of any part of 
this ** 
 ** documentation and/or software.                                   
** 
 
*****************************************************************
***** 
 */ 
 
/* -- include the following line if the md5.h header file is 
separate -- */ 
/* #include "md5.h" */ 
 
/* forward declaration */ 
static void Transform (); 
 
static unsigned char PADDING[64] = { 
  0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 
}; 
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/* F, G and H are basic MD5 functions: selection, majority, 
parity */ 
#define F(x, y, z) (((x) & (y)) | ((~x) & (z))) 
#define G(x, y, z) (((x) & (z)) | ((y) & (~z))) 
#define H(x, y, z) ((x) ^ (y) ^ (z)) 
#define I(x, y, z) ((y) ^ ((x) | (~z)))  
 
/* ROTATE_LEFT rotates x left n bits */ 
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) 
 
/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4 
*/ 
/* Rotation is separate from addition to prevent recomputation */ 
#define FF(a, b, c, d, x, s, ac) \ 
  {(a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \ 
   (a) = ROTATE_LEFT ((a), (s)); \ 
   (a) += (b); \ 
  } 
#define GG(a, b, c, d, x, s, ac) \ 
  {(a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \ 
   (a) = ROTATE_LEFT ((a), (s)); \ 
   (a) += (b); \ 
  } 
#define HH(a, b, c, d, x, s, ac) \ 
  {(a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \ 
   (a) = ROTATE_LEFT ((a), (s)); \ 
   (a) += (b); \ 
  } 
#define II(a, b, c, d, x, s, ac) \ 
  {(a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \ 
   (a) = ROTATE_LEFT ((a), (s)); \ 
   (a) += (b); \ 
  } 
 
void MD5Init (mdContext) 
MD5_CTX *mdContext; 
{ 
  mdContext->i[0] = mdContext->i[1] = (UINT4)0; 
 
  /* Load magic initialization constants. 
   */ 
  mdContext->buf[0] = (UINT4)0x67452301; 
  mdContext->buf[1] = (UINT4)0xefcdab89; 
  mdContext->buf[2] = (UINT4)0x98badcfe; 
  mdContext->buf[3] = (UINT4)0x10325476; 
} 
 
void MD5Update (mdContext, inBuf, inLen) 
MD5_CTX *mdContext; 
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unsigned char *inBuf; 
unsigned int inLen; 
{ 
  UINT4 in[16]; 
  int mdi; 
  unsigned int i, ii; 
 
  /* compute number of bytes mod 64 */ 
  mdi = (int)((mdContext->i[0] >> 3) & 0x3F); 
 
  /* update number of bits */ 
  if ((mdContext->i[0] + ((UINT4)inLen << 3)) < mdContext->i[0]) 
    mdContext->i[1]++; 
  mdContext->i[0] += ((UINT4)inLen << 3); 
  mdContext->i[1] += ((UINT4)inLen >> 29); 
 
  while (inLen--) { 
    /* add new character to buffer, increment mdi */ 
    mdContext->in[mdi++] = *inBuf++; 
 
    /* transform if necessary */ 
    if (mdi == 0x40) { 
      for (i = 0, ii = 0; i < 16; i++, ii += 4) 
        in[i] = (((UINT4)mdContext->in[ii+3]) << 24) | 
                (((UINT4)mdContext->in[ii+2]) << 16) | 
                (((UINT4)mdContext->in[ii+1]) << 8) | 
                ((UINT4)mdContext->in[ii]); 
      Transform (mdContext->buf, in); 
      mdi = 0; 
    } 
  } 
} 
 
void MD5Final (mdContext) 
MD5_CTX *mdContext; 
{ 
  UINT4 in[16]; 
  int mdi; 
  unsigned int i, ii; 
  unsigned int padLen; 
 
  /* save number of bits */ 
  in[14] = mdContext->i[0]; 
  in[15] = mdContext->i[1]; 
 
  /* compute number of bytes mod 64 */ 
  mdi = (int)((mdContext->i[0] >> 3) & 0x3F); 
 
  /* pad out to 56 mod 64 */ 
  padLen = (mdi < 56) ? (56 - mdi) : (120 - mdi); 
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  MD5Update (mdContext, PADDING, padLen); 
 
  /* append length in bits and transform */ 
  for (i = 0, ii = 0; i < 14; i++, ii += 4) 
    in[i] = (((UINT4)mdContext->in[ii+3]) << 24) | 
            (((UINT4)mdContext->in[ii+2]) << 16) | 
            (((UINT4)mdContext->in[ii+1]) << 8) | 
            ((UINT4)mdContext->in[ii]); 
  Transform (mdContext->buf, in); 
 
  /* store buffer in digest */ 
  for (i = 0, ii = 0; i < 4; i++, ii += 4) { 
    mdContext->digest[ii] = (unsigned char)(mdContext->buf[i] & 
0xFF); 
    mdContext->digest[ii+1] = 
      (unsigned char)((mdContext->buf[i] >> 8) & 0xFF); 
    mdContext->digest[ii+2] = 
      (unsigned char)((mdContext->buf[i] >> 16) & 0xFF); 
    mdContext->digest[ii+3] = 
      (unsigned char)((mdContext->buf[i] >> 24) & 0xFF); 
  } 
} 
 
/* Basic MD5 step. Transform buf based on in. 
 */ 
static void Transform (buf, in) 
UINT4 *buf; 
UINT4 *in; 
{ 
  UINT4 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; 
 
  /* Round 1 */ 
#define S11 7 
#define S12 12 
#define S13 17 
#define S14 22 
  FF ( a, b, c, d, in[ 0], S11, 3614090360); /* 1 */ 
  FF ( d, a, b, c, in[ 1], S12, 3905402710); /* 2 */ 
  FF ( c, d, a, b, in[ 2], S13,  606105819); /* 3 */ 
  FF ( b, c, d, a, in[ 3], S14, 3250441966); /* 4 */ 
  FF ( a, b, c, d, in[ 4], S11, 4118548399); /* 5 */ 
  FF ( d, a, b, c, in[ 5], S12, 1200080426); /* 6 */ 
  FF ( c, d, a, b, in[ 6], S13, 2821735955); /* 7 */ 
  FF ( b, c, d, a, in[ 7], S14, 4249261313); /* 8 */ 
  FF ( a, b, c, d, in[ 8], S11, 1770035416); /* 9 */ 
  FF ( d, a, b, c, in[ 9], S12, 2336552879); /* 10 */ 
  FF ( c, d, a, b, in[10], S13, 4294925233); /* 11 */ 
  FF ( b, c, d, a, in[11], S14, 2304563134); /* 12 */ 
  FF ( a, b, c, d, in[12], S11, 1804603682); /* 13 */ 
  FF ( d, a, b, c, in[13], S12, 4254626195); /* 14 */ 



66 
 

  FF ( c, d, a, b, in[14], S13, 2792965006); /* 15 */ 
  FF ( b, c, d, a, in[15], S14, 1236535329); /* 16 */ 
 
  /* Round 2 */ 
#define S21 5 
#define S22 9 
#define S23 14 
#define S24 20 
  GG ( a, b, c, d, in[ 1], S21, 4129170786); /* 17 */ 
  GG ( d, a, b, c, in[ 6], S22, 3225465664); /* 18 */ 
  GG ( c, d, a, b, in[11], S23,  643717713); /* 19 */ 
  GG ( b, c, d, a, in[ 0], S24, 3921069994); /* 20 */ 
  GG ( a, b, c, d, in[ 5], S21, 3593408605); /* 21 */ 
  GG ( d, a, b, c, in[10], S22,   38016083); /* 22 */ 
  GG ( c, d, a, b, in[15], S23, 3634488961); /* 23 */ 
  GG ( b, c, d, a, in[ 4], S24, 3889429448); /* 24 */ 
  GG ( a, b, c, d, in[ 9], S21,  568446438); /* 25 */ 
  GG ( d, a, b, c, in[14], S22, 3275163606); /* 26 */ 
  GG ( c, d, a, b, in[ 3], S23, 4107603335); /* 27 */ 
  GG ( b, c, d, a, in[ 8], S24, 1163531501); /* 28 */ 
  GG ( a, b, c, d, in[13], S21, 2850285829); /* 29 */ 
  GG ( d, a, b, c, in[ 2], S22, 4243563512); /* 30 */ 
  GG ( c, d, a, b, in[ 7], S23, 1735328473); /* 31 */ 
  GG ( b, c, d, a, in[12], S24, 2368359562); /* 32 */ 
 
  /* Round 3 */ 
#define S31 4 
#define S32 11 
#define S33 16 
#define S34 23 
  HH ( a, b, c, d, in[ 5], S31, 4294588738); /* 33 */ 
  HH ( d, a, b, c, in[ 8], S32, 2272392833); /* 34 */ 
  HH ( c, d, a, b, in[11], S33, 1839030562); /* 35 */ 
  HH ( b, c, d, a, in[14], S34, 4259657740); /* 36 */ 
  HH ( a, b, c, d, in[ 1], S31, 2763975236); /* 37 */ 
  HH ( d, a, b, c, in[ 4], S32, 1272893353); /* 38 */ 
  HH ( c, d, a, b, in[ 7], S33, 4139469664); /* 39 */ 
  HH ( b, c, d, a, in[10], S34, 3200236656); /* 40 */ 
  HH ( a, b, c, d, in[13], S31,  681279174); /* 41 */ 
  HH ( d, a, b, c, in[ 0], S32, 3936430074); /* 42 */ 
  HH ( c, d, a, b, in[ 3], S33, 3572445317); /* 43 */ 
  HH ( b, c, d, a, in[ 6], S34,   76029189); /* 44 */ 
  HH ( a, b, c, d, in[ 9], S31, 3654602809); /* 45 */ 
  HH ( d, a, b, c, in[12], S32, 3873151461); /* 46 */ 
  HH ( c, d, a, b, in[15], S33,  530742520); /* 47 */ 
  HH ( b, c, d, a, in[ 2], S34, 3299628645); /* 48 */ 
 
  /* Round 4 */ 
#define S41 6 
#define S42 10 
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#define S43 15 
#define S44 21 
  II ( a, b, c, d, in[ 0], S41, 4096336452); /* 49 */ 
  II ( d, a, b, c, in[ 7], S42, 1126891415); /* 50 */ 
  II ( c, d, a, b, in[14], S43, 2878612391); /* 51 */ 
  II ( b, c, d, a, in[ 5], S44, 4237533241); /* 52 */ 
  II ( a, b, c, d, in[12], S41, 1700485571); /* 53 */ 
  II ( d, a, b, c, in[ 3], S42, 2399980690); /* 54 */ 
  II ( c, d, a, b, in[10], S43, 4293915773); /* 55 */ 
  II ( b, c, d, a, in[ 1], S44, 2240044497); /* 56 */ 
  II ( a, b, c, d, in[ 8], S41, 1873313359); /* 57 */ 
  II ( d, a, b, c, in[15], S42, 4264355552); /* 58 */ 
  II ( c, d, a, b, in[ 6], S43, 2734768916); /* 59 */ 
  II ( b, c, d, a, in[13], S44, 1309151649); /* 60 */ 
  II ( a, b, c, d, in[ 4], S41, 4149444226); /* 61 */ 
  II ( d, a, b, c, in[11], S42, 3174756917); /* 62 */ 
  II ( c, d, a, b, in[ 2], S43,  718787259); /* 63 */ 
  II ( b, c, d, a, in[ 9], S44, 3951481745); /* 64 */ 
 
  buf[0] += a; 
  buf[1] += b; 
  buf[2] += c; 
  buf[3] += d; 
} 
 
/* 
 
*****************************************************************
***** 
 ** End of md5.c                                                     
** 
 ******************************* (cut) 
******************************** 
 */ 
 
/* 
 
*****************************************************************
***** 
 ** md5driver.c -- sample routines to test                           
** 
 ** RSA Data Security, Inc. MD5 message digest algorithm.            
** 
 ** Created: 2/16/90 RLR                                             
** 
 ** Updated: 1/91 SRD                                                
** 
 
*****************************************************************
***** 
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 */ 
 
/* 
 
*****************************************************************
***** 
 ** Copyright (C) 1990, RSA Data Security, Inc. All rights 
reserved. ** 
 **                                                                  
** 
 ** RSA Data Security, Inc. makes no representations concerning      
** 
 ** either the merchantability of this software or the 
suitability   ** 
 ** of this software for any particular purpose.  It is provided 
"as ** 
 ** is" without express or implied warranty of any kind.             
** 
 **                                                                  
** 
 ** These notices must be retained in any copies of any part of 
this ** 
 ** documentation and/or software.                                   
** 
 
*****************************************************************
***** 
 */ 
 
#include <stdio.h> 
#include <sys/types.h> 
#include <time.h> 
#include <string.h> 
/* -- include the following file if the file md5.h is separate -- 
*/ 
/* #include "md5.h" */ 
 
/* Prints message digest buffer in mdContext as 32 hexadecimal 
digits. 
   Order is from low-order byte to high-order byte of digest. 
   Each byte is printed with high-order hexadecimal digit first. 
 */ 
static void MDPrint (mdContext) 
MD5_CTX *mdContext; 
{ 
  int i; 
 
  for (i = 0; i < 16; i++) 
    printf ("%02x", mdContext->digest[i]); 
} 
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/* size of test block */ 
#define TEST_BLOCK_SIZE 1000 
 
/* number of blocks to process */ 
#define TEST_BLOCKS 10000 
 
/* number of test bytes = TEST_BLOCK_SIZE * TEST_BLOCKS */ 
static long TEST_BYTES = (long)TEST_BLOCK_SIZE * 
(long)TEST_BLOCKS; 
 
/* A time trial routine, to measure the speed of MD5. 
   Measures wall time required to digest TEST_BLOCKS * 
TEST_BLOCK_SIZE 
   characters. 
 */ 
static void MDTimeTrial () 
{ 
  MD5_CTX mdContext; 
  time_t endTime, startTime; 
  unsigned char data[TEST_BLOCK_SIZE]; 
  unsigned int i; 
 
  /* initialize test data */ 
  for (i = 0; i < TEST_BLOCK_SIZE; i++) 
    data[i] = (unsigned char)(i & 0xFF); 
 
  /* start timer */ 
  printf ("MD5 time trial. Processing %ld characters...\n", 
TEST_BYTES); 
  time (&startTime); 
 
  /* digest data in TEST_BLOCK_SIZE byte blocks */ 
  MD5Init (&mdContext); 
  for (i = TEST_BLOCKS; i > 0; i--) 
    MD5Update (&mdContext, data, TEST_BLOCK_SIZE); 
  MD5Final (&mdContext); 
 
  /* stop timer, get time difference */ 
  time (&endTime); 
  MDPrint (&mdContext); 
  printf (" is digest of test input.\n"); 
  printf 
    ("Seconds to process test input: %ld\n", (long)(endTime-
startTime)); 
  printf 
    ("Characters processed per second: %ld\n", 
     TEST_BYTES/(endTime-startTime)); 
} 
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/* Computes the message digest for string inString. 
   Prints out message digest, a space, the string (in quotes) and 
a 
   carriage return. 
 */ 
static void MDString (inString) 
char *inString; 
{ 
  MD5_CTX mdContext; 
  unsigned int len = strlen (inString); 
 
  MD5Init (&mdContext); 
  MD5Update (&mdContext, inString, len); 
  MD5Final (&mdContext); 
  MDPrint (&mdContext); 
  printf (" \"%s\"\n\n", inString); 
} 
 
/* Computes the message digest for a specified file. 
   Prints out message digest, a space, the file name, and a 
carriage 
   return. 
 */ 
static void MDFile (filename) 
char *filename; 
{ 
  FILE *inFile = fopen (filename, "rb"); 
  MD5_CTX mdContext; 
  int bytes; 
  unsigned char data[1024]; 
 
  if (inFile == NULL) { 
    printf ("%s can't be opened.\n", filename); 
    return; 
  } 
 
  MD5Init (&mdContext); 
  while ((bytes = fread (data, 1, 1024, inFile)) != 0) 
    MD5Update (&mdContext, data, bytes); 
  MD5Final (&mdContext); 
  MDPrint (&mdContext); 
  printf (" %s\n", filename); 
  fclose (inFile); 
} 
 
/* Writes the message digest of the data from stdin onto stdout, 
   followed by a carriage return. 
 */ 
static void MDFilter () 
{ 
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  MD5_CTX mdContext; 
  int bytes; 
  unsigned char data[16]; 
 
  MD5Init (&mdContext); 
  while ((bytes = fread (data, 1, 16, stdin)) != 0) 
    MD5Update (&mdContext, data, bytes); 
  MD5Final (&mdContext); 
  MDPrint (&mdContext); 
  printf ("\n"); 
} 
 
/* Runs a standard suite of test data. 
 */ 
static void MDTestSuite () 
{ 
  printf ("MD5 test suite results:\n\n"); 
  MDString (""); 
  MDString ("a"); 
  MDString ("abc"); 
  MDString ("message digest"); 
  MDString ("abcdefghijklmnopqrstuvwxyz"); 
  MDString 
    
("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
); 
  MDString 
    ("1234567890123456789012345678901234567890\ 
1234567890123456789012345678901234567890"); 
  /* Contents of file foo are "abc" */ 
  MDFile ("foo"); 
} 
 
void main (argc, argv) 
int argc; 
char *argv[]; 
{ 
  int i; 
 
  /* For each command line argument in turn: 
  ** filename          -- prints message digest and name of file 
  ** -sstring          -- prints message digest and contents of 
string 
  ** -t                -- prints time trial statistics for 1M 
characters 
  ** -x                -- execute a standard suite of test data 
  ** (no args)         -- writes messages digest of stdin onto 
stdout 
  */ 
  if (argc == 1) 
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    MDFilter (); 
  else 
    for (i = 1; i < argc; i++) 
      if (argv[i][0] == '-' && argv[i][1] == 's') 
        MDString (argv[i] + 2); 
      else if (strcmp (argv[i], "-t") == 0) 
        MDTimeTrial (); 
      else if (strcmp (argv[i], "-x") == 0) 
        MDTestSuite (); 
      else MDFile (argv[i]); 
} 
 
/* 
 
*****************************************************************
***** 
 ** End of md5driver.c                                               
** 
 ******************************* (cut) 
******************************** 
 */ 
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Appendix B. APS Modification to Android OS 1.5 

Appendix B contains the APS security mechanism implementation on the 

Android OS 1.5.  APS modifies the contents of PackageManagerService.java.  All APS 

modifications fall within the installPackageLI() function shown here.  The 

PackageManagerService.java file in its entirety can be viewed in the com.android.server 

package downloaded from http://source.android.com.  

 
/* 
 * Copyright (C) 2006 The Android Open Source Project 
 * 
 * Licensed under the Apache License, Version 2.0 (the 
"License"); 
 * you may not use this file except in compliance with the 
License. 
 * You may obtain a copy of the License at 
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0 
 * 
 * Unless required by applicable law or agreed to in writing, 
software 
 * distributed under the License is distributed on an "AS IS" 
BASIS, 
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express 
or implied. 
 * See the License for the specific language governing 
permissions and 
 * limitations under the License. 
 */ 
 
package com.android.server; 

 

private PackageInstalledInfo installPackageLI(Uri pPackageURI, 
      int pFlags, boolean newInstall) { 
     File tmpPackageFile = null; 
     String pkgName = null; 
     boolean forwardLocked = false; 
     boolean replacingExistingPackage = false; 
     // Result object to be returned 
     PackageInstalledInfo res = new PackageInstalledInfo(); 
     res.returnCode = PackageManager.INSTALL_SUCCEEDED; 
     res.uid = -1; 
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     res.pkg = null; 
     res.removedInfo = new PackageRemovedInfo(); 
 
     main_flow: try { 
      tmpPackageFile = createTempPackageFile(); 
      if (tmpPackageFile == null) { 
       res.returnCode = 
PackageManager.INSTALL_FAILED_INSUFFICIENT_STORAGE; 
       break main_flow; 
      } 
      tmpPackageFile.deleteOnExit();  // paranoia 
      if (pPackageURI.getScheme().equals("file")) { 
       final File srcPackageFile = new 
File(pPackageURI.getPath()); 
       // We copy the source package file to a temp file 
and then rename it to the 
       // destination file in order to eliminate a 
window where the package directory 
       // scanner notices the new package file but it's 
not completely copied yet. 
       if (!FileUtils.copyFile(srcPackageFile, 
tmpPackageFile)) { 
        Log.e(TAG, "Couldn't copy package file to 
temp file."); 
        res.returnCode = 
PackageManager.INSTALL_FAILED_INSUFFICIENT_STORAGE; 
        break main_flow; 
       } 
      } else if (pPackageURI.getScheme().equals("content")) 
{ 
       ParcelFileDescriptor fd; 
       try { 
        fd = 
mContext.getContentResolver().openFileDescriptor(pPackageURI, 
"r"); 
       } catch (FileNotFoundException e) { 
        Log.e(TAG, "Couldn't open file descriptor 
from download service."); 
        res.returnCode = 
PackageManager.INSTALL_FAILED_INSUFFICIENT_STORAGE; 
        break main_flow; 
       } 
       if (fd == null) { 
        Log.e(TAG, "Couldn't open file descriptor 
from download service (null)."); 
        res.returnCode = 
PackageManager.INSTALL_FAILED_INSUFFICIENT_STORAGE; 
        break main_flow; 
       } 
       if (Config.LOGV) { 
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        Log.v(TAG, "Opened file descriptor from 
download service."); 
       } 
       ParcelFileDescriptor.AutoCloseInputStream 
       dlStream = new 
ParcelFileDescriptor.AutoCloseInputStream(fd); 
       // We copy the source package file to a temp file 
and then rename it to the 
       // destination file in order to eliminate a 
window where the package directory 
       // scanner notices the new package file but it's 
not completely copied yet. 
       if (!FileUtils.copyToFile(dlStream, 
tmpPackageFile)) { 
        Log.e(TAG, "Couldn't copy package stream to 
temp file."); 
        res.returnCode = 
PackageManager.INSTALL_FAILED_INSUFFICIENT_STORAGE; 
        break main_flow; 
       } 
      } else { 
       Log.e(TAG, "Package URI is not 'file:' or 
'content:' - " + pPackageURI); 
       res.returnCode = 
PackageManager.INSTALL_FAILED_INVALID_URI; 
       break main_flow; 
      } 
      pkgName = PackageParser.parsePackageName( 
        tmpPackageFile.getAbsolutePath(), 0); 
      if (pkgName == null) { 
       Log.e(TAG, "Couldn't find a package name in : " + 
tmpPackageFile); 
       res.returnCode = 
PackageManager.INSTALL_FAILED_INVALID_APK; 
       break main_flow; 
      } 
      res.name = pkgName; 
      //initialize some variables before installing pkg 
      final String pkgFileName = pkgName + ".apk"; 
       
       
        /* 
         * Android Protection System (APS) Code added by Capt 
Jonathan D. Stueckle, USAF  
         * Air Force Institute of Technology Graduate Student, 
March 2011 
         *  
         * A boolean flag 'packageApproved' is initialized for 
storing the result of the content hashing 
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         * and comparison.  The flag  remains false unless the 
value is updated based on the result from  
         * the custom approveApk()function.   
         *  
         * The full path of the application package requesting 
installation is sent to the custom function. 
         * This source file is run through the hashing algorithm 
and returns a boolean "true" if a match  
         * is found. In this case, the application package then 
continues through the installation process. 
         * If no match is found, the function exits leaving the 
flag with a "false" value, causing the  
         * installPackageLI() function to exit with an "Invalid 
APK" Error message. 
         */ 
       
      /* Flag to store hashing & comparison result (added 
JDS) */ 
      boolean packageApproved = false;  
 
      /* Full application package path sent to custom APS 
function (added JDS) */ 
      packageApproved=approveApk(tmpPackageFile.getPath()); 
       
      /*  
       * Hash digest match was found in white-list, so 
application package is approved  
       * and can continue through normal installation 
process. (added JDS) 
       */ 
      if(packageApproved) 
      { 
 
       /* Normal installation process not modified by 
JDS */ 
       final File destDir = 
((pFlags&PackageManager.FORWARD_LOCK_PACKAGE) != 0) 
       ?  mDrmAppPrivateInstallDir 
         : mAppInstallDir; 
       final File destPackageFile = new File(destDir, 
pkgFileName); 
       final String destFilePath = 
destPackageFile.getAbsolutePath(); 
       File destResourceFile; 
       if ((pFlags&PackageManager.FORWARD_LOCK_PACKAGE) 
!= 0) { 
        final String publicZipFileName = pkgName + 
".zip"; 
        destResourceFile = new File(mAppInstallDir, 
publicZipFileName); 
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        forwardLocked = true; 
       } else { 
        destResourceFile = destPackageFile; 
       } 
       // Retrieve PackageSettings and parse package 
       int parseFlags = PackageParser.PARSE_CHATTY; 
       parseFlags |= mDefParseFlags; 
       PackageParser pp = new 
PackageParser(tmpPackageFile.getPath()); 
       pp.setSeparateProcesses(mSeparateProcesses); 
       pp.setSdkVersion(mSdkVersion); 
       final PackageParser.Package pkg = 
pp.parsePackage(tmpPackageFile, 
         destPackageFile.getAbsolutePath(), 
mMetrics, parseFlags); 
       if (pkg == null) { 
        res.returnCode = pp.getParseError(); 
        break main_flow; 
       } 
       if (GET_CERTIFICATES && 
!pp.collectCertificates(pkg, parseFlags)) { 
        res.returnCode = pp.getParseError(); 
        break main_flow; 
       } 
 
       synchronized (mPackages) { 
        //check if installing already existing 
package 
        if 
((pFlags&PackageManager.REPLACE_EXISTING_PACKAGE) != 0 
          && 
mPackages.containsKey(pkgName)) { 
         replacingExistingPackage = true; 
        } 
       } 
 
       if(replacingExistingPackage) { 
        replacePackageLI(pkgName, 
          tmpPackageFile,  
          destFilePath, destPackageFile, 
destResourceFile, 
          pkg, forwardLocked, newInstall, 
          res); 
       } else { 
        installNewPackageLI(pkgName, 
          tmpPackageFile,  
          destFilePath, destPackageFile, 
destResourceFile, 
          pkg, forwardLocked, newInstall, 
          res); 
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       } 
      } //End of normal installation process 
       
      /* 
       * Hash digest match was not found in white-list, so 
application package is not 
       * approved and is blocked from continuing through the 
installation process. 
       * APS adds an error message here to indicate to the 
user that the application 
       * package was not approved. (added JDS) 
       */ 
      else { 
       /* Message sent back to user  (added JDS) */ 
       res.returnCode = 
PackageManager.INSTALL_FAILED_INVALID_APK; 
       /*Skip installation process and return error 
(added JDS) */ 
       break main_flow; 
      } 
 
     } finally { 
      if (tmpPackageFile != null && tmpPackageFile.exists()) 
{ 
       tmpPackageFile.delete(); 
      } 
     } 
     return res; 
    } 
     
    /* 
     * Android Protection System (APS) Code added by Capt 
Jonathan D. Stueckle, USAF  
     * Air Force Institute of Technology Graduate Student, March 
2011 
     *  
     * This code was obtained from http://www.apache.org and 
provides the  
     * functionality for calculating MD5 hash digests for the 
application packages. 
     * The APS custom aproveApk() function utilizes 
getMD5Checksum(), which then calls 
     * createChecksum() to help calculate the hash. 
     *  
     * getMD5Checksum() incorporates a fast way to convert a byte 
array to a HEX string. 
     */ 
     
    public static String getMD5Checksum(String filename) throws 
Exception { 
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     /* byte array to hold result from hashing function (added 
JDS) */ 
     byte[] b = createChecksum(filename); 
      
     /* String to hold HEX conversion of byte array (added JDS) 
*/ 
     String result = ""; 
      
     /* Convert byte array to HEX string (added JDS) */ 
     for (int i=0; i < b.length; i++) { 
      result += 
       Integer.toString( ( b[i] & 0xff ) + 0x100, 
16).substring( 1 ); 
     } 
     /* Hash digest of application package now returned to 
approveApk() function  
      * for determination of white-list match. (added JDS) 
      */ 
     return result; 
    } 
     
    public static byte[] createChecksum(String filename) throws 
    Exception { 
      
     /* Read in application package for hashing (added JDS) */ 
     InputStream fis =  new FileInputStream(filename); 
 
     /* Calculate MD5 checksum of application package (added 
JDS) */ 
     byte[] buffer = new byte[1024]; 
     MessageDigest complete = MessageDigest.getInstance("MD5"); 
     int numRead; 
     do { 
      numRead = fis.read(buffer); 
      if (numRead > 0) { 
       complete.update(buffer, 0, numRead); 
      } 
     } while (numRead != -1); 
     fis.close(); 
     /* Returns byte array containing hash digest (added  JDS) 
*/ 
     return complete.digest(); 
    } 
 
 
     
    /* 
     *  
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     * Android Protection System (APS) Code written by Capt 
Jonathan D. Stueckle, USAF  
     * Air Force Institute of Technology Graduate Student, March 
2011 
     *  
     * This function receives the full path of an application 
packages as input and 
     * returns a boolean output indicating if a hash digest match 
was found in the  
     * white-list. A value of 'true' corresponds to a match, so 
the boolean  
     * 'approvedContent' is initialized to 'false.' 
     *  
     * The APS white-list consists of hash digests stored in 
strings.  There is a digest 
     * corresponding to each default application on the system as 
well as for external  
     * applications that have been approved.   
     *  
     * A string 'hash_check' is set to the return value from the 
getMD5Checksum() function. 
     * This string is a HEX representation of the MD5 hash digest 
computed on the  
     * submitted application package.   
     *  
     * This string is then compared against each string stored in 
the white-list.  If a match 
     * is found, the boolean flag is set to 'true' and returned.  
This allows the submitted  
     * application package to continue through the installation 
process and the application  
     * be allowed to execute on the Android device.  If no match 
is found, the flag remains 
     * 'false' and when returned it blocks the application 
package from installation, denying 
     * execution of the application on the device. 
     */ 
     
    public static boolean approveApk(String filePath) { 
      
     /* Flag to store hashing & comparison result */ 
     boolean approvedContent = false; 
      
     /* APS white-list - represents all approved applications */ 
     String alarm = "8896f8d227b04781daaf095c3167736d";  
 //Default app 
     String browser = "a3f878fc3450f69543bd689f148a6cd7"; 
 //Default app 
     String calc = "af7704733992987922f89e4d09607def";  
 //Default app 
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     String calendar = "c7a5ba3b1b03fcdad1bfbdaaa2588a6a"; 
 //Default app 
     String calProv = "e3c570a2f83e2dd73610b0c42c3ec1cb";   
 //Default app 
     String camera = "2108c148abb3c9ecfacc3d420359f267";   
 //Default app 
     String contacts = "7207e0d85e4655da4486b9febb0d2da5";   
 //Default app 
     String contProv = "7d76c5495830aed6c9855a37e5d58cd5";   
 //Default app 
     String dev = "b682a76a5de57d2399136d0739e3f4f6";    
 //Default app 
     String downProv = "ab73085f4bca1720021b9766d4930d07";   
 //Default app 
     String drmProv = "2a320eefe517fe3213333f639e8ce498";   
 //Default app 
     String email = "f1a7e8a24fc6492a873af6939bb103a2";   
 //Default app 
     String googSearch = "06a45a35afb6efebecd295255357ba93";  
 //Default app 
     String html = "46db4ef1e3b005c8313d11e83e0955af";    
 //Default app 
     String imProv = "7629ec3578803de655508718c9e5f577";   
 //Default app 
     String latin = "330335bfc4c3333fa8d15e77caebea90";   
 //Default app 
     String launch = "23491fcbd1d40701e9bbfc1be53a7af9";   
 //Default app 
     String media = "7339bd4c3e81fb7a43601ce05c280ba3";   
 //Default app 
     String mms = "e81e0161aabcdcfe7df30824f4763b9f";    
 //Default app 
     String music = "60dc8e68ec2a850e34c61e459e4d4304";   
 //Default app 
     String packIns = "1c5355e767f1887a725d555b38a5abd0";   
 //Default app 
     String phone = "a42e096375cb31eb2cdc733818300607";   
 //Default app 
     String sdk = "6ba40c5241c04d395b5303c8f7dd2aab";    
 //Default app 
     String settings = "e25d7d5f97cac8650c10a9e5ab3faa30";   
 //Default app 
     String setProv = "6abe6e95a75a78ec122714a889d9878a";   
 //Default app 
     String sound = "b3226a2a4ef823b71c738a87e366a0db";   
 //Default app 
     String spare = "b7ebad29f535b4645f58f013cbe86bd7";   
 //Default app 
     String subsc = "282f7575bcc9bbfb6570e060635d58a3";   
 //Default app 
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     String telep = "893d234aac0fcde18b0246856d2cb455";   
 //Default app 
     String term = "16e003868e775a18805955e7ffe736e4";    
 //Default app 
     String user = "69cf79ae88262974b7e194ba91d3476d";   
 //Default app 
     String voice = "4c8a08b5c4c1bbb653d8d8eba72a6be3";  
 //Default app 
     String framres = "1bfdef7219657c99badbc593851ed4a7"; 
 //Default app 
     String appinst = "5ebbe69c85dbe29f26faa51dbc02f730"; 
 //AppsInstaller 
     String algtut = "dc8c5fe4bd847b42a47664a989a9932c";  
 //AlgebraTutor 
     String mictagread = "3e0b5702d3fb27af68d1d701b9cc9a14"; 
 //MicrosoftTagReader 
     String tinyflash = "5be80ad02692a41912aaeb2d01c2a8c9"; 
 //TinyFlashlight 
     String apricalc = "0eded4890d8dde529761d16ea75d3f01"; 
 //aPriceCalc 
     String autokill = "bcd8b0a97b7750da7c2c19a1d39b09fe"; 
 //AutorunKiller 
     String ligrac = "4bdee01df1fc194cb014a96653b75096";  
 //LightRacer 
     String vidbox = "c1f012df7d3d463b2c67cc6bc70d82cf";  
 //videobox 
      
     /* Variable to store hash digest of application package */ 
     String hash_check = ""; 
      
     try{ 
      /* Get hash digest */ 
      hash_check = getMD5Checksum(filePath); 
     } 
     catch (Exception e) { 
            e.printStackTrace();  
        } 
     /* Compare hash digest to all values stored in the APS 
white-list */ 
    
 if(hash_check.equals(voice)||hash_check.equals(user)||hash_
check.equals(term)|| 
      
 hash_check.equals(telep)||hash_check.equals(subsc)||hash_ch
eck.equals(spare)|| 
      
 hash_check.equals(sound)||hash_check.equals(setProv)||hash_
check.equals(settings)|| 
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 hash_check.equals(sdk)||hash_check.equals(phone)||hash_chec
k.equals(packIns)|| 
      
 hash_check.equals(music)||hash_check.equals(mms)||hash_chec
k.equals(media)|| 
      
 hash_check.equals(launch)||hash_check.equals(latin)||hash_c
heck.equals(imProv)|| 
      
 hash_check.equals(html)||hash_check.equals(googSearch)||has
h_check.equals(email)|| 
      
 hash_check.equals(drmProv)||hash_check.equals(downProv)||ha
sh_check.equals(dev)|| 
      
 hash_check.equals(contProv)||hash_check.equals(contacts)||h
ash_check.equals(camera)|| 
      
 hash_check.equals(calProv)||hash_check.equals(calendar)||ha
sh_check.equals(calc)|| 
      
 hash_check.equals(browser)||hash_check.equals(alarm)||hash_
check.equals(framres)|| 
      
 hash_check.equals(appinst)||hash_check.equals(algtut)||hash
_check.equals(mictagread)|| 
      
 hash_check.equals(tinyflash)||hash_check.equals(apricalc)||
hash_check.equals(autokill)|| 
      
 hash_check.equals(ligrac)||hash_check.equals(vidbox)) 
       
      /* Match is found - indicate approved application */ 
      approvedContent = true; 
      
     /* Flag containing approval result - 'true' if match found 
*/ 
     return approvedContent; 
      
    }  /* End of APS custom security function */ 
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